
"Vl,'ß

Proceedings of the
First International Conference

ALGEBRAIC
METHODOLOGY

AND
SOFTWARE

TECHNOLOGY

-24, 1

The university of Iowa
Iowa City, Iowa

DIVERSITY oA

I-
♦

°UISIDED IB* Preceding Page Blank
SB 4

Mathematics well-applied illuminates rather than confuses ses I

DISTRIBUTION STATEMENT A "l'

Approved for pralle release;

10
to

to

o
00
o

90 03 20 034

First International Conference on Algebraic
Methodology and Software Technology, AMAST1

May 22-24, 1989, Iowa City, Iowa, USA

Organizing Committee:

Conference
Chairs

Program
Committee
Chair

Committee
Members

A. Fleck

W.A. Kirk

T. Rus

W.S. Hatcher
G. Hotz
D. Ionescu
E. Madison
M. Main
M. Mislove
M. Muralidharan
G. Nelson
C. Rattray
D. Schmidt

University of Iowa
Department of Computer Science
Iowa City, IA 52242, USA
University of Iowa
Department of Mathematics
Iowa City, IA 52242, USA

University of Iowa
Department of Computer Science
Iowa City, IA 52242 USA

University Laval, Canada
Universität des Saarlandes, West Germany
University of Ottawa, Canada
University of Iowa, USA
University of Colorado, USA
Tulane University, USA
University of Iowa, USA
University of Iowa, USA
University of Stirling, Scotland
Kansas State University, USA

1This conference was sponsored by grants from the Office of Naval Research,
XEROX Corporation - Webster Research Center, Rochester, N.Y.,
Departments of Computer Science and Mathemati :s of the University of Iowa, Iowa City

Approved for r^r'^^ ~~7'- '

Organizing Committee's Message

Past research on mathematical foundation of computer science has focused mostly on the
study of the mathematics of the software objects and very little has been done to develop
software objects on a mathematical basis. Languages, programs, and the process of pro-
gram execution have been identified as fundamental objects of study of computer science
as a discipline. Moreover, algebraists and computer scientists have begun to relate the
abstractions in computer science to the process of abstract representation in universal al-
gebra. A strong trend of applying universal algebras as the mathematical foundation of
computer science is in vogue. In pursuing this trend we need to observe however that there
are differences between the objects and methods used in universal algebra and computer
science. While abstractions used in universal algebra represent behavior of ideal (math-
ematical) objects, abstractions in computer science represent behavior of real (physical)
objects. While the ideal character of the abstractions in universal algebra allows systematic
approaches of their specifications and development of formal notations naturally suited to
handling them, computer science develops formal notations to denote real objects that are
rarely formally specified. While an algebraic language accommodates naturally seman-
tics, syntax, and semantics*-*syntax association of the algebraic abstractions, the syntax
and the semantics of a computer language are specified by different mechanisms and their
association into a language is artificial.

The similarities of the abstractions handled in universal algebra and computer science
lead to the development of new mathematical theories. Our conjecture is that keeping in
view also the differences between the abstractions used in universal algebra and computer
science, new mathematics can be created that will facilitate the construction of the (soft-
ware) objects arising in computer science. The goal of this conference is to consolidate this
conjecture, looking at algebraic methodology as a foundation for software technology and
showing that universal algebra provides a practical mathematical alternative to ad hoc
approaches used in software development. This idea was well received by the international
and national industrial and research communities reflecting the desire for the development
of software technology on a mathematical basis. Therefore, unlike other conferences on
mathematical foundations of computer science, in which usually the mathematics is en-
riched with new theories originated in computer science, the submissions to this conference
indeed show developments in computer science that originate in mathematics.

From the 89 submissions we had we could deduce a large spectrum of use of algebraic
methods as mathematical basis of the new software technology. The major directions
extracted from these submissions formed the guidelines for the organization of the technical
program of the conference and are:

• Formalizing the concept of a process and modeling the computer activity as an
algebra of processes.

• New alternatives for computer language specification and implementation based on
universal algebras rather than grammars.

• Formal models of the parallel and distributed systems.

• Type algebra allowing the extension of the class of first order values.

• General application of the algebra to software development and maintenance.

There are 5 invited talks from the following distinguished speakers: R. Constable (Cor-
nell University, USA), W. F. Lawvere (State University of New York at Buffalo, USA),
J. Meseguer (SRI International, USA), M. Nivat (The University of Paris VII, France),
and E. Wagner (IBM Thomas J. Watson Research Center, USA). Our special thanks to
them, for taking time from their busy schedules and accepting our invitation to give a talk.
They will provide special insight into current areas of research reflecting the theme of the
conference.

There are 27 contributed papers in the proceedings. Of the 89 papers submitted in
response to the call for papers, 27 were selected for presentation at the conference. The
selection process was carried out by the program committee along with the following ad-
ditional reviewers: Maria Zamfir-Bleyderg (Kansas State University), Steve Bruell (Uni-
versity of Iowa) and Mahesh Dodani (University of Iowa). Each paper was reviewed by at
least two reviewers and the final selection was based on the composite scores, originality
and relevance to the theme of the conference. We wish to thank all the reviewers for their
time and effort. In addition, we wish to thank all those who submitted papers.

The conference would not have been possible without the generous support of the
following sponsors: Office of Naval Research, XEROX Corporation - Webster Research
Center, and Departments of Computer Science and Mathematics of the University of Iowa.
We would like to thank all of them for their financial assistance and interest. Finally, we
would like to thank our secretaries Cyndi, Beth, Julie and Margaret, for their assistance
in secretarial matters.

An issue of the international journal "Theoretical Computer Science" will be dedicated
to this conference. All participants at the conference are invited to submit papers to this
issue. The submissions should be sent, no later than August 1, 1989, to:

AMAST Organizing Committee
Department of Computer Science

The University of Iowa
Iowa City, IA 52242, USA

Conference Program

Sunday, May 21, 6:30-8:30pm Reception

Monday, May 22, 8:00-8:45 Registration

Monday 22, 8:45-9:00 Welcome, Introduction: Fleck, A., Conference Chair.

Monday 22, 9:00-12:30: Session 1 Process Algebra
(Chair: Nelson, G., The University of Iowa, Iowa, USA)

• 9:00-10:00 Invited talk: Minimal Finite Transition Systems, Nivat, M., Universite
Paris VH, France.

• 10:00-10:30 Baeten, J., Algebra of Communicating Processes.

10:30-11:00 Coffee break

• 11:00-11:30 Crew, R. F., Parameterized Process Category.

• 11:30-12:00 Pigozzi, D., Equality-Test and If-Then-Else Algebras: Axiomatization
and Specification.

• 12:00-12:30 Benson, D. B., Iyer, R.R., Algebraic Structure of Petri-Nets and Nonde-
terminism.

12:30-2:00 Lunch

Monday 22, 2:00-6:00 Session 2 Algebraic Methods for Language Specification
(Chair: Hatcher, W.S., University Laval, Quebec, Canada)

• 2:00-3:00 Invited talk: Display of Graphics and their Applications, as Exemplified by
2-Categories and Hegelian "Taco", William F. Lawvere, Buffalo University, USA.

• 3:00-3:30: Bidoit, M., The Stratified Loose Semantics: An Attempt to Provide an
Adequate Algebraic Model of Modularity.

• 3:30-4:00 Jacobs, D., Ehrig, H., Fey, W., Hansen H., Lowe M., Algebraic Concepts
for the Evolution of Module Families

4:00-4:30 Coffee break

• 4:30-5:00 Bradley L., An Algebraic Approach to the Early Stages of Language Design.

• 5:00-5:30 Talcott, C. L., Algebraic Methods in Programming Language Theory.

• 5:30-6:00 Parpucea, I., Dynamic Extension of Programming Language Semantics.

• 7:30 Social hour

Tuesday 23, 8:30-12 Session 3 Parallel and Distributed Processing
(Chair: Cornell, A., Brigham Young University, Utah, USA)

• 8:30-9:30 Invited talk: General Logics, Jose Mesegu'er, SRI, USA.

• 9:30-10:00 Logrippo, L., LOTOS: An Algebraic Specification Language for Distributed
Systems.

10:00-10:30 Coffee break

• 10:30-11:00 Miller, S., Kühl, J., Modeling Distributed Systems as Distributed Data
Types.

• 11:00-11:30 Ionescu, D., Wen, L., A Formal Mathematical Model for Detecting the
Subroutine Dependencies: A Logic Programming Approach.

• 11:30-12 Martin, G.A.R., Norris, M.T., Everett, R.P., Shields, M.W., The CCS In-
terface Equation -An Example of Specification Construction Using Rigorous Tech-
niques.

12-1:30 Lunch

Tuesday 23, 1:30-5:30 Session 4 Types, Polymorphism and A-Calculus
(Chair: Main, M., University of Colorado at Boulder, Colorado, USA)

• 1:30-2:30 Invited talk: Implementing Mathematics as an Approach for Formal Rea-
soning, R. Constable, Cornell University, USA.

• 2:30-3:00 Hatcher, W.S., Tonga, M., Pairings on Lambda Algebras.

• 3:00-3:30 Zhang, H., Constructor Models as Abstract Data Types.

3:30-4:00 Coffee break

• 4:00-4:30 Riecke, J.G., Bloom, B., LCF Should be Lifted.

• 4:30-5:00 Scollo, G., Manca, V., Salibra, A., DELTA: A Deduction System Integrating
Equational Logic and Type Assignment.

• 5:00-5:30 Janicki, R., Müldner, T., On Algebraic Transformations of Sequential Spec-
ifications.

• 6:30 Banquet (Buses depart)

Wednesday 24, 8:30-12 Session 5 Algebraic Software Development
(Chair: Schmidt, D., Kansas State University, Kansas, USA)

• 8:30-9:30 Invited talk: An Algebraically Specified Language for Data Directed Design,
Eric Wagner, IBM Thomas J. Watson Center, USA.

• 9:30-10:00 Rattray, d.M., Modeling the Software Process.

10:00-10:30 Coffee break

• 10:30-11:00 Wells, C, Path Grammars.

• 11:00-11:30 Pratt, V., Enriched Categories and Floyd- Warshall Connection.

• 11:30-12 Dauchet, M., Tison, S., Finite Automata, Algorithms and Software Design.

12-1:30 Lunch

Wednesday 24, 1:30-5:00 Session 6 Algebraic Semantics of Programs
(Chair: Rattray, C.I.M., University of Stirling, Stirling, Scotland)

• 1:30-2:00 Schmidt, D., Even, S., Category-Sorted Algebra-Based Action Semantics.

• 2:00-2:30 Vidal, D., The De Bruijn Algebra

• 2:30-3:00 Oguztuzun, H.M., A Game Characterization of the Observational Equiva-
lence of Processes.

3:00-3:30 Coffee break

• 3:30-4:00 Wijland, W.P., Van Glabbek R.J., Refinement in Branching Time Seman-
tics.

• 4:00-4:30 Kent, R.E., Dialectical Program Semantics.

• 4:30-5:00 Concluding remarks

ON MINIMAL FINITE TRANSITION SYSTEMS1

Maurice Nivat, L.I.T.P., University Paris VII

Introduction

The theory of finite automata, which we shall rather call finite
transition systems is certainly the oldest chapter of theoretical
computer science. Most of the algebraic results come from the
consideration of deterministic automata since there is in each class of
automata recognizing the same language a "minimal" one which has
indeed the smallest number of states but also is the image in a
morphism of all the automata in the class. Every knows how to
compute this minimal automaton which is unique from either a given
automaton or a rational expression representing its language.
Moreover this automaton is closely linked with the syntactic monoid
ant the so called Nerode equivalence which is the smallest right-
regular equivalence relation which saturates the language.

The situation is entirely different if one considers non
deterministic finite transition systems : it is immediate that one may
have two equivalent finite transition systems, recognizing the same
language, which have the same smallest number of states and which
cannot be mapped by morphisms onto a same smaller finite transition
system recognizing the same language. The study of finite transition
systems has been greatly exhauced in recent years by the construction
of various models of parallel or distributed systems. Among these
models the calculus CCS of Robin Milner has been extremely

Part of an unfinished paper

influential. In this paper we borrow many ideas from R. Milner's
work especially the notion of observational equivalence, and its
reformulation by Andre Arnold and Anne Dicky using morphisms
which we call MR-morphisms in the sequel. It is a restricted notion
of equivalence based on the idea that two systems are equivalent if
each one simulates the other one. The simulation of Si by S2 means
that for every possible behaviour of Si the exists a simulating
behaviour of S2 with the property that at each instant of time S2
will be in a state in which it can perform all the actions which Si

may perform and only those.

We introduce a more general notion of equivalence using the
family of functional morphisms : a functional morphism of Si onto
S2 has the property that every behaviour (or computation) of S2 is
the image of a behaviour of Si . We thus characterize the
equivalence Si ~F S2 <=> &(Si) = £(S2) where &(S) is the

global language of a system ie the set of traces of all the
computations from any state to any state. The characterization is
extremely similar to the characterization of MR morphisms.

In a last chapter we consider deterministic systems and
surprisingly we discover that under various assumptions (right
separatedness, strong connectivity) the functional morphisms happen

to be MR morphisms.

(0

I. Morphisms and quotients of Finite Transition Systems

We shall use the following definitions and notations.

If S = <Q,T> is a FTS and R is an equivalence relation on Q
we define the quotient of S by R as the FTS S/R = <Q/R, T/R>

where

Q/R is the set of equivalence classes modulo R.

(We denote [q]R or simply [q] the equivalence class of q).

T/R is the set of transitions

T/R = {([q] A [q1]) I 3 qi 6 [q] 3 q'ie [q*] : (qi A q'i) e T.

A quotient of S is also the image of S by a morphism : a
morphism h of S is defined by a mapping h of Q onto a finite
set h(Q), the image h(S) being the FTS

h(S) = <h(Q), h(T)> where

h(T) = {(h(q) A h(q')) I (q A q') e T}

Clearly if R is an equivalence relation, the canonical mapping
hR of S onto Q/R is a morphism of S onto S/R and we can

write hR(S) = S/R.

Conversely a mapping h of Q onto h(Q) defines the
canonical equivalence relation Rh such that

q ~ Rh q'<=» h(q) = h(q')

ii

and the morphic image h(S) is isomorphic to the quotient S/Rh-

A computation of the transition system S = <Q,T> is
denoted qo ^ qi ^ q2 ^ qn assuring that for all i e [n] qi-i -4-
qi is a transition of T.

Wedenote Comp(S, q, q') the set of all computations

q0 % qi % ^ qn such that qo = q and q' = qn.

The sets Comp(S, q, Q) and Comp(S,Q,q') are defined as

Comp(S, q, Q) = u {Comp(S, q, q*) Iq'eQ}

Comp(S, Q, q') = u {Comp(S, q, q*) I q e Q}

The trace of the computation c = (qo -* qi -».. -^ qn) is A,(c)

= aia2 .-an which is a word in A+-

And we define the following sets of traces

L(S, q, q*) = MComp(S, q, q')) if q * q'
= {e} u k(Comp(S, q, q')) if q =q'

8
(we assume that there is always an empty computation q -» q

from any state q to itself)

L(S, q, Q) = u {US, q, q') Iq'eQ}

L(S, Q, q) = u {L(S, q, q') I q e Q}

And eventually we denote £(S) the global language of S

IZ

defined by £(S) = u {L(S, q, q') I q, q' e Q}.

We note that £&(S) is factorial ie satisfies

- for all fi, f2, f3 e A+ fif2f3 e &(S) => f2e £(S).

The following properties are immediate

ai
Let h be a morphism of S onto h(S) and c = qo -?

qi% -^ qn be a computation of S then h(c) = h(ao) -4

h(ai)-»... 3 h(qn) is a computation of h(S).

Thus we have

Property For every morphism h of a transition system S =
<Q,T> one has h {Comp (5, q, q')) £. Comp (h (S), h (q), h

W))
L (5, q, q')s.L Qi (S), h(q),h (q')) and

It is not generally true that these inclusions are equalities and the
morphismes for which they are indeed equalities will play a major
role in the sequel.

Definition The morphism h of S onto h (5) is functional iff
every computation in h(S) is the image under h of a computation

in S.

Equivalence of FTS

Several notions of equivalences will be considered in the present
paper.

IB

Three of them will be attached to families of morphisms which

have the Church-Rosser property.

The family H of morphisms is a Church-Rosser family (or is

CR)iff

- the identity belongs to H

- H is closed under composition

- if S is a FTS and hi, I12 are the H-morphism of S onto

hi(S) = Si and h2(S) = S2 them there exist two H-morphisms h*i

and h'2 such that h'i(Si) = h'2(S2).

This last property can be visualized by the diamond diagram

Property 1.2 // H is a Church-Rosser family of morphisms then

the relation =n defined by

Si SH S2 <=» 3 hi, h2 e H hi(Si) = h2(S2)

is an equivalence relation between transition systems which we call

the lower H-equivalence.

Proof It is an immediate consequence of the CR property. If Si =H

S2 and S2 ^H S3 we have the following diagram

/</

3 which we can complete

We get

and this H is closed by composition S6 is the image of Si and S3
by the two H-morphisms hi 0 h6 and I13 0114 (we say also that SO

is a common H-quotient of Si and S3).

Property 1.3 The family Mor of all morphisms is CR

Proof We consider the two morphisms hi and I12 of S onto
hi(S) = Siand h2(S)=S2.

We denote Ri and R2 the two equivalence relations on Q
corresponding to hi and I12 and we call R the smallest equivalence
relation on Q containing Ri and R2.

We recall that R is the transitive closure of Ri u R2 which

means that

15

q R q' <=> 3 qo,.»,qh such that
qo = q, q' = qh and for all i e [h] qi-i Ri qi or qi-i R2 qi-

The morphism h corresponding to R maps S onto S' and it
is clear that h can be factorized in hi o h'i and I12 o h'2 since the
equivalence classes modulo R are union of equivalence classes
modulo Ri (resp. R2). D

Unfortunately the lower equivalence =Mor is not very

interesting, since we have the following

Property 1.4 Let A' be a subset of A and denote SA' the FTS
with only one state qo and the set of transitions

{qo-^qoiae A'}

Then the mapping h of S = <Q,T > defined by h(q) = qo
for all q e Q is a morphism of S onto SA' iff A' = X(T) =

[aeA \3q,q'G Q (qAq')e T}.

Proof obvious

And the property 1.3 implies immediately that

Si=MorS2»^(Tl) = X(T2).

It is clear since one can map Si onto SAX if Ai = X,(Ti) and

S2 onto SA2
if A2 = W2) and clearly SAi =Mor SA2

iff Al = A2.

We now introduce a more interesting family of morphisms
denoted MR : a morphism in MR is called a right Milner

/<*

morphism, since the equivalence associated with MR has been first
considered by R. Milner and we shall define later a family of left

Milner morphisms.

Definition The morphism h of S is a right Milner morphism

(or an MR morphism) iff it satisfies

V q, q\ qi e Q , V a e A

(q A qi) e T and h(q') = h(q) imply 3 q'i : (q* -^ q'i) e T

and h(q'i) = h(qi)

Property 1.5 The family MR of right Milner morphism is a

Church Rosser family.

Proof It is immediate from the proof of property 1.2. We define R
as the transitive closure of Ri and R2 and we assume that q R q' ie
there exist qo,..., qh such that qo = q, q' = qk and for all is
[h] qi-i (Ri u R2) qi- Then we assume the existence of a transition
q0 A q0 : the morphisms hi and I12 being RM we know that there

exists qi such that qi -> qi and qi Ri qo or qi R2 qo
according to whether qoRiqi or qoR2qi-

— a
By an easy induction on k we can find qh such that qk ->

qk and qk R qo» thus proving that IIR is RM. It is easy then to
prove there exist two RM morphisms h'i and h'2 such that h.R = hi 0
h'i = h2 0 h'2.D

We have to remark

Property 1.6 Every MR morphisms is a functional morphism.

il

Proof This is an immediate consequence of the definition. Every
a

computation of length 1, ie every computation of the form h(q) ->
h(q') in h(S) is the image under h of some computation qi -> q'i
in S by the very definition of a morphism. Assume we have proved
that every computation of length n in S and consider a
computation of length n+1 in h(S)

qo -^ qi -* ••• -^ qn ^ qn+l

By induction there exists a computation in S

qo% qi i£ ...is qn such that for all ie {0,...,n}

h(qi) = qi. then since h is MR and we know that there exist a
transition q "S*1 qn+l with h(qn) = qn and h(qn+l) = qn+1 from
the fact that h(qn) = h(qn) we can infer the existence a a transition
qn^1 qn+1 for some qn+i satisfying h(qn+i) = qn+l-Thus qo4

qi % ... i| qn "SJ1 qn+1 is a computation in S whose image by h is

the computation qo~* qi -^ ••• ^ qn+l • D

Partition corresponding to right Milner morphisms

For any given morphism h of S one has a partition of the set
of states Q which is the partition in equivalence classes modulo h.
And conversely if Q = Qiu...u Qh is a partition of Q. It defines a
morphism of S : one maps all the states in each component Qi

onto a single state i e [h].

In this paragraph we characterize the MR-partitions

corresponding to MR morphism.

/8

Restrictions of a transition system

If Q' is a subset of Q we define the restriction of S = <Q,T>

to Q' as the system S I Q' given by

- its set of states Q'
- the set of transitions T I Q' = {t e T I <x(t) e Q' and

ß (t) e Q'}

The subset Q' of Q is said to be monoidal iff
&(S I Q') = X(T I Q')*

The set X(T I Q')* is the subset of the alphabet A formed by
all the letters which label a transition of T I Q' or equivalently all
the letters which label a transition in T whose origin and extremity
belong to Q'. We allow X(J I Q') to be empty : then & (S I Q) =

{e}. The first remark is

Property 1.7 Each component of an MR partition of Q is

monoidal.

Proof Let Q = Qi u ... u Qk be the MR partition corresponding
to the MR-morphism h which maps for all i e [k] all the elements
of Qi onto the state i of h(Q) = [h].

Clearly the set of transitions of h(S) contains all the
transitions i -» i for all i e [h] and a e MT I Qi).

In fact h(T) I {i} = {i A i I a e X(T I Qi).

This proves that &<S I Qi) £. UT I Qi)* = &<h(S) I {i}).

tf

The reverse inclusion comes from the fact that the MR
morphism h is also functional : every computation of h(S) I {i} is
the image of a computation of S I Qi whence

&(h(S)l{i})Ä&(SIQi). 0

In fact we can prove a stronger property : in the same situation

as above one has

L(S I Qi, qi, Qi) = UT I Qi)*

For every computation c' in h(S) I {i} and every state qi in
Qi one can find a computation c in S I Qi such that h(c) = c' and
a(c) = qi, this is just a new application of the MR condition. D

We can call strongly right monoidal a subset of Q such that
for all qi e Qi L(S I Qi, qi, Qi) = X(J I Qi)* and then state the

Theorem 1.1

The partition Qi = Qi uQ2V ... u Qk is an MR partition iff

-for all ie [h] Qi is strongly right monoi'dal

-for all i,j e [h] if there exists a transition t suchthat
a(t) e Qi, ß(r) e Q, and X(t) = a then for all qi e Qi there
exists a transition t' such that a(t') = qi, ß(/') e Qj and X(t) = a.

Proof The only if part follows immediately from property 1.7 and
the MR condition.

Conversely the morphism corresponding to the partition is MR.

20

A transition q A q' in T may be either a transition of T I Qi for
some i or a transition from Qi to Qj where i *j. In the first case
q, q' € Qi and state q" is equivalent to q modulo h iff q" 6 Qi:
we certainly have then for all such q" e Qi a transition labeled by a,
with q" as origin and terminating in Qi for otherwise

L(S I Qi, q", Qi) would be different from X(T I Qi)*.

In the second case we have q, q" e Qi and q' E QJ, where j *
i and the condition of the theorem imply the existence of a transition
labeled by a with q" as origin and terminating in Qj. D

This theorem gives us a procedure to find all the MR quotients
of a given TS. We look for all the strongly right monoi'dal subsets of
Q : clearly every subset reduced to one state is strongly right
monoi'dal and we can form partitions. For each of them we check the
MR condition.

Exemple

In order to compute all the MR quotients of Si we need look at

all the MR partition

- certainly the trivial one {1, 2, 3, 4, 5} = {1} u {2} u {3} u
{4} u {5} is MR (this is a general phenomen)

21

- we can find only 2 strongly right monoidal subsets of Q
{2,3} is such that L(S I {2,3}, 2, {2,3}) = L(S I {2,3}, 3, {2,3} =

(a u b)*
{4,5} is such that L(S I {4,5}, 4, {4,5}) = L(S I {4,5}, 5, {4,5}) = c*

And we check that {1} u {2,3} u {4,5} is an MR partition :
we just have to check that there exists a transition from 3 to {4,5}
labeled by c since there exists a transition from 2 to {4,5} labeled

by c.

Then we can form the MR quotient S2

There are no more MR partitions.

A slight alteration of Si gives us a MR minimal transition

system

2.1.

for now {4,5} is not strongly right monoidal.

Thus the only partition which could be MR is

{l}u{2,3}u{4}u{5}

but it is not since we have 2 -> 4 and for the partition to be MR
there should be a transition 3 -> 4. Thus S3 has no MR quotient

different from itself and is MR minimal.

23

II. Functional equivalence

A family H of morphism is said to be anti-Church Rosser
(abbreviated ACR) iff it satisfies the properties

-H contains the identity

- H is closed under composition
-for all Si,S2, S3 andmorphisms hi and I12 in H suchthat

S3 =hi(Si) = h2(S2) there exists a transition system S and two H-

morphisms h'i and h*2 satisfying

hi(S) = Si and h2(S) = S2.

Property II.l If the family H is ACR the relation between

transition systems defined by

Si~HS2^3S3hi,h2eH Si=hi(S) and S2 = h2(S)

in an equivalence relation.

Proof : Indeed we just have to check the transitivity of this

relation.

If SI~H S2 and S2 ~H S3 we are in the situation described by

the following diagram

2.H

S'

and using the ACR property we can complete this diagram to get

12 3

Since ho hi and h'0 h'3 are in H which is closed by
composition this diagram proves that Si ~ S3

Property II.2 The family Mor of all morphisms is ACR.

Proof We consider the amalgamated product Si ® S2 of two

transitions systems.

This product is the transition system S given by

Q = Qix Q2

T = Ti ® T2 = {(qi, q2) A (q'i, q'2) I qi A

q'l)e Ti and (q2 A q'2) e T2}

The computations of Si ® S2 are amalgamated products of
computations of Si and S2 ie

Z5

(qo qo) ^ (qi» qi) ^ - ^ fan» qn) is a computation of
Si <g> S2 iff two projections

q(A qi^ - ^ (qn, qn and qo ^ qi ^ ...-^ qn

are computations of Si and S2 respectively.

If S3 = hi(Si) = ti2(S2) is a common quotient of Si and S2
and 7ci,3C2 are the two projections of Qi X Q2 onto Qi and Q2

one has Si = TCI(SI <8> S2) and S2 = ^2(Si ® S2).

Clearly TCI(TI® T2)^Ti.

The reverse inclusion comes from the easy fact that if

hi(Si)=h2(S2) then by property 1.3 X(Ti) = MT2).

Thus for every (qi -> q'l) e Ti there exists (q2 -> q'2) e T2

with the same label a and Ti® T2 contains (qi, q2) -» (q'l, q'2)
a , r-,

where first projection is qi -* q 1. U

The two equivalences =Mor and ~Mor corresponding to the

family of all morphisms are identical ie one has

Si =Mor S2 <=> H?l) = MT2) <=> Si ~Mor S2

Property II.2 The family F of functional morphismls is ACR.

We prove the more precise property.

2^

Property II.3 If there exists two functional morphisms h 2 and
h 2 such that h i(5 1) = h 2(5 2) then the two projections of S \®S 2
onto S 1 and S 2 are functional.

Proof Assume hi (Si) = h2(S2) with hi, I12 e F.

Every computation in S3 =hi(Si) = h2(S2) is the image under
31 30

hi (resp. I12) of a computation in Si (resp. S2).Thus if qo -> qi -4
^ qn is a computation in S3 there exist one computation in Si,

— a — an —
namely qi -» q2 ->... -^ qn

and one computation in S2, namely,

qo -^ qi-^ — -^ qn which satisfy

V i G {0,...,n} : hi(qi) = qi and h2(qj) = qi

The amalgamated product of these two computations, namely,

(qo,q A (qi,q) 4 ...-5 (qn, qn)

is a computation in Si® S2.

Thus for every computation ci in Si one can find a
computation C2 in S2 such that h2(c2) = hi(ci) and ci ® C2 is a
computation in Si® S2 clearly satisfying 7ti(ci® C2) = ci.

We have proved property II.3 and property H.2.

Definition The equivalence ^F associated to the ACR family of
functional morphisms is called the functional equivalence.

27

Theorem II.1 Two transitions systems are functionally equivalent
iff their global languages are identical.

Proof SI~H S2 implies the existence of two functional morphisms
Li and I12 and a transition system S suchthat Si=hi(S) and S2 =
h2(S). Since hi and I12 are functional we have

£(Si) = £(S) = £(S2)

Conversely we assume that %{S\)- £(S2) : we prove that
&(Si) = 56/(S2) = &(Si® S2) and that the two projections of

Si ® S2 onto Si and S2 are functional.

Consider a word u = ai...an in &(Si) and a computation c =

q0 % qi % „.% qn of Si such that X(c) = u. Since u belongs to

&(S2) there exists a computation c= qo^> qi-4 ...-9 qn of

S2 such that X(c) = u.

The amalgamated product of c and c is a computation of
Si® S2 such that A,(c ® c) = u, m(c ® c) = c, mic ® c) = c.
Thus Se,(Si)£_£(S2) implies St (Si) = &(Si® S2) and the
functionality of 711. The proof follows immediately. D

28

Functional partitions

In this paragraph we characterize the partitions corresponding
to functional morphisms, called functional partitions or F-partitions.

We first remark that

Property III.4

Each component of a F-partition is a monoidal subset of Q.

Proof

It is immediate from the proof of property 1.7 and the fact that
the morphism h is functional. This implies that Comp(h(S) I {i},
{i}, {i}) = h(Comp(S I Qi, Qi, Qi) whence £(h(S) I {i}) = A,(T I

Qi)* = &(S I Qi). D

Definition II. Let Q' be a monoidal subset of Q such that X(T I
Q') = A' and &(S I Qi) = A*i. We say that a pair (Q'i, Q'2) of

subsets of Q' is a complete input-output system for Q' iff

A1* = U {L(S I Q'.q'i, q'2) I q'l 6 Q'l, q*2 6 Q'2}

Theorem II.2 The following conditions are necessary and
sufficient for a partition Q = Qiu ...u Qh to be functional

- for all i e [h] Qi is monoidal
- for all i,j e [h] and all a e A there exists two subsets of Qi

denoted Qy,a and Qi,a,j which satisfy the following conditions :

-Qi,j,a = 0 iff (teTla(t)e Qj, ß(t) e Qi, X(t) = a} = 0

- Qi,aj = 0 iff {t e T I a(t) e Qi, ß(t) e Qj, X(t) = a} = 0

- for all i,j,a,

2H

V qj e Qj,a,i V qi Qe Qy,a (qj -> qi) e T
(Qi, Qi,a,j) and (Qy.a, Qi) are complete input-output

systems of Qi if Qi,a,j (resp. Qi,j,a) is not empty

- for all ijj e [h], a,b e A if

Qi,j,a and Qi,M are non empty
(Qij,a , Qi,b,i) is a complete input-output system of Qi

Proof These conditions are exactly the necessary conditions so that
we can make a computation of S from succession of computations in
S I Qij followed by a transition from Qix to Qi2 then a computation
in S I Qi2 followed by a transition from Qi2 to Qi3 and so on.

Intuitively the situation is described by the following figure

«i

Oy*'^1 a1!'*1

QiVi2>b

We have only expressed that there are enough transitions
between the components of a partition : for all word f in A*i2

there exists a computation of S I Qi2 from one state in Qi2 ira
which can receive a transition labeled by a coming from qi2 to the
origin of a transition labeled by b going to Qiz .

So

Proof A partition satisfying the conditions of theorem H2 is an F-

partition :

- a computation in h(S) where h maps Q onto [h] can be

factorized as follows

qii
fi^) qj2

fig} qj3 _> Ji&P qjm of S I Qj such that all the qj

belong to Qj.

The definition of complete input-output systems implies that we
can always take (qjp qjm) in (Qi, <3i) if (Qi, Öi) is a complete

input-output system for Qi.

Then we can use the condition of theorem II.2 to find a
computation in S which is mapped by h onto a given computation
c' of h(S). If the computation c' contains as a factor

... ii (-4 i2 -4 i2 -4 i3 ...

we shall replace this factor by

... # qi2 . 1 ^ qi2,2 f2-42) -. ^ qi2,m 3 where (q^ ,
qi2,m) e (Qi^ii^ . Qi2,a2,i3)

wnicft is a complete input-output
system for Qi2-

The leftmost and right most factors will be replaced by

fi(l) fi(m) , _ n qij.1 ^ ». ~> qii.ni where qi1>m e Qi^a^
fn(l) fn(m) , ~

qim,l *■* ... n-+ qin,m where qin,l e Qin,in_i,an

3/

We have clearly build a computation c in S such that h(c) = c'.

The same argument shows the necessity of the condition :
assume that Q = Qiu ...u Qk is an F-partition and consider i, j, 1
e [k], a, be A suchthat i*j and i*i... if Qi,a,j * 0 and
Qi,b,l ^ 0 we have in h(S) the computation c':

.a.f.b,
j —> i —» l —> 1

If (Qi,j,a» Qi,b,l) is not a complete input output system for
Qi then we can'find an f e &(h(S) I {i}) such that for all

computations qix -» qin of S I Qi either q^ «5 Qij,a or qin £

Qi,b,L

Thus there cannot exist a computation in S

a f b
qj -> q»! -> qin -> qi

which is mapped by h on c'. D

Exemple The following system Si has no F-quotient.

3Z

No subset of {1, 2, 3} with more than one element is monoidal. Let
us compute the deterministic equivalent S2 of Si. The deterministic
equivalent S2 of Si is surely functionally equivalent to Si.

The system S2 has an F-quotient (and one only).

The only monoidal subset of {12, 123, 23, 3} with two elements is

33

{23, 3} but the corresponding partition

take

{12} u {23, 3} u {123} is not an F-partition for we can only

Q{23,3}, {12}, a = {23}
and L(S2 I {23, 3}, 23, {23, 3}) = a (a u b)* * (a u b)*

The only monoidal subset with 3 elements is {123,23,3} and the

partition {12} u {123, 23, 3} is an F-partition for we can take

Q{123, 23, 3}, {12}, a = {23} and Q{123, 232, 3}, c, {12} = {123, 23, 3}

And {23}, {123, 23, 3} is a complete input output system for

{123,23,3}.

The corresponding F-quotient of S2 is S3

3 c
isomorphic to

Since S2~FSI and S2~FS3 we have Si ~F S3. We can

check it by computing Si ® S3 = S4

3H

Algebra and Communicating Processes

Jos CM. Baeten*
Department of Software Technology,

Centre for Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.

As an example of the use of algebraic methods In computer science, the
theory ACP, dealing with concurrent communicating processes. Is
described.

1. INTRODUCTION. .
Process algebra is the study of concurrent communicating processes in an algebraic
framework. As the initiator of this field we consider R. MILNER, with his Calculus of
Communicating Systems [M80], which formed the basis for most of the axiom systems in
the theory ACP of BERGSTRA & KLOP [BK84, BK85]. The endeavor of process algebra
is to treat concurrency theory (the theory of concurrent communicating processes) in an
axiomatic way, just as for instance the study of mathematical objects as groups or fields
starts with an axiomatization of the intended objects. The axiomatic method which concerns
us, is algebraic in the sense that we consider structures (also called process algebras by
some people) which are models of some set of (mostly) equational axioms; these structures
are equipped with several operators. Thus, we use the term algebra in the sense of model
theory.

There is ample motivation for such an axiomatic-algebraic approach to concurrency
theory. The main reason is that there is not one definite notion of process. There is a
staggering amount of properties which one may or may not attribute to processes, there are
dozens of views (semantics) which one may have on (a particular kind of) processes, and
there are infinitely many models of processes. So an attempt to organize this field of
process theories leads very naturally and almost unavoidably to an axiomatic methodology
- and a curious consequence is that one has to answer the question "What is a process?"
with the seemingly circular answer "A process is something that obeys a certain set of
axioms ... for processes". The axiomatic method has proven effective in mathematics and
mathematical logic - and in our opinion it has its merits in computer science as wel, if only
for its organizing and unifying power.

Next to the organizing role of this set-up with axiom systems, their models and the
study of their relations, we have the obvious computational aspect. Even more than in
mathematics and mathematical logic, in computer science it is algebra that counts - the well-
known etymology of the word should be convincing enough. For instance, in a system
verification the use of transition diagrams may be very illuminating, but especially for
larger systems it is evidently desirable to have a formalized mathematical language at our
disposal in which specifications, computations, proofs can be given in what is in principle
a linear notation (evidenced by [B89]). Only then can we hope to succeed in attempts to
mechanize our dealings with the objects of interest In our case the mathematical language
is algebraic, with basic constants, operators to construct larger processes, and equations
defining the nature of the processes under consideration. (The format of pure equations is
not always enough, though. On occasion, conditional equations and some infinitary proof
rules are used.) To be specific: we will always insist on the use of congruences, rather than
mere equivalences in the construction of process algebras; this in order to preserve the
purely algebraic format

* Partial support received by ESPRIT contract 432, A formal integrated approach to industrial software
development (METEOR), and RACE contract 1046, Specification and Programming Environment for
Communication Software (SPECS).

25

A further advantage of the use of the axiomatic-algebraic method is that the entire
apparatus of mathematical logic and the theory of abstract data types is at our disposal. One
can study extensions of axiom systems, homomorphisms of the corresponding process
algebras. One can formulate exact statements as to the relative expressibility of some
process operators (non-definability results).

Of course, the present axiomatizations for concurrency theory do not cover the entire
spectrum of interest Several aspects of processes are as yet not well treated in the algebraic
framework. The most notable examples concern the real-time behaviour of processes, and
what is called true concurrency (non-interleaving semantics). Algebraic theories for these
aspects are under development at the moment (see e.g. VAN GLABBEEK & VAANDRAGER

In our view, process algebra can be seen as a worthy descendant of 'classical' automata
theory as it originated three or four decades ago. The crucial difference is that nowadays
one is interested not merely in the execution traces (or language) of one automaton, but m
the behaviour of systems of communicating automata. As Milner and also HOARE [H85 j
have discovered, it is then for several purposes no longer sufficient to abstract the
behaviour of a process to a language of execution traces. Instead, one has to work with a
more discriminating process semantics, in which also the timing of choices of a system
component is taken into account Mathematically, this difference is very sharply expressed
in the equation x-(y + z) = x-y + x-z, where + denotes choice and • is sequential
composition; x,y ,z are processes. If one is interested in languages of execution traces (trace
semantics), this equations holds; but in process algebra it will in general not hold.
Nevertheless, process algebra retains the option of adding the equation and studying its
effect In fact one goal of process algebra is to form a uniform framework in which several
different process semantics can be compared and related. One can call this comparative
concurrency semantics.

We bring structure in our theory of process algebra by modularization, i.e. we start
from a minimal theory (containing only the operators +,•), and then we add new features
one at at time. This allows us to study features in isolation, and to combine the modules of
the theory in different ways.

In the following, we give a survey of the theory ACP (Algebra of Communicating
Processes) as introduced in [BK84].

2. BASIC PROCESS ALGEBRA.
Process algebra starts with a given set A of atomic actions a,b,c These actions are
taken to be indivisible and to have no duration. When we describe a certain application, we
will have to be specify what are the atomic actions involved. Thus, the set A will form a
parameter of our theory. Each atomic action is a constant in the theory. Actions can be
combined into composite processes by the operators + and •. + is alternative
composition, choice or sum, and • is sequential composition or product Thus, (a
+b)-C is the process that first chooses between executing a or b, next executes C and then
terminates. Since time has a direction, product is not commutative; but sum is, and in fact it
is stipulated that the options (summands) possible in some state of the process form a set.
Formally, we will require that all processes x,y,... satisfy the axioms in table 1.

x + y = y + x A1

(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y)-z = x-z + y-z A4

(x-y)-z = x-(yz) A5_
Table 1. BPA.

We often leave out brackets and the product sign, as in regular algebra. Product will bind
more strongly than other operators, sum will bind more weakly. Thus, xy + z means (x-y)
+ z. The theory in table 1 is called Basic Process Algebra or BPA.

3£

We do not include an axiom x(y + z) = xy + xz because the moment of choice in both
processes is different, and this difference is important in many applications. For instance, a
game of Russian roulette could be described by spin-click + spin-bang, but not by
spin-(click + bang).

3. TERMINATION.
Let us again consider sequential composition of processes. If in process x-y component x
has performed all its actions, and can do nothing more, it has terminated successfully and
process y starts. But if process x consists of a number of concurrently operating
components, that at some point are all waiting for a communication from another
component, then x also cannot perform any more actions, but in such a situation we do not
want that y start. In the second case, we say x has terminated unsuccessfully, is in a state
of deadlock, and no action is possible any more. Thus, we want to distinguish between
successful and unsuccessful termination. We use the constant 8 for unsuccessful
termination. The laws for this constant are in table 2.

x + 5 = x A6
8-x = 8 A7
Table 2. Deadlock.

Now we can give a more formal argument for rejection of the law x(y + z) = xy + xz: a
consequence is ab = a(b + 8) = ab + aS, and this means that a process with deadlock
possibility is equal to one without In most applications, it is important to model deadlock
behaviour, so this is an unwanted identification.

It sometimes has advantages to also include a special constant for successful
termination. For this purpose, the empty process e is often used, with laws ex = x = xe.

4. INTERLEAVING.
If we look at the parallel composition x II y of processes x and y from the outside, we
will see that the atomic actions of x and y are interleaved or merged in time (since we
assume they have no duration). Thus, at each point in time, the next action will either come
from x or from y. In order to get a finite axiomatisation for the parallel composition or
merge, we will use an auxiliary operator IL (left-merge). xlLy is just like x II y, but with the
restriction that the first step comes from x.

xlly = xll_y + ylLx Ml
alLx = ax M2
axlLy = a(xlly) M3
(x + y)ILz = xlLz + ylLz M4

The theory with constants A, operators +,-, II, IL and axioms in tables 1 and 3 is called PA.
Axioms M2 and M3 are actually axiom schemes: we have such an axiom for each a e
Au{8}. With the axioms of PA, we can eliminate the operators II, IL from all closed terms.
In fact, this elimination takes the form of a term rewrite system. Thus, merge becomes a
defined operator on closed terms (but not on infinite processes, defined by means of
recursive equations).

5. COMMUNICATION.
Parallel composition between processes is not interesting without some form of
communication. For this reason, we extend the merge operator of section 4 to include the
possibilities for communication. First, we need to say which atomic actions can
communicate, which actions are communication partners. For this reason, we assume we
have a communication function y given on the set of atomic actions A. This is a partial
binary function on A; if 7(a,b) = C, we say that a and b communicate, and the result of the
communication is C; if 7(a,b) is undefined, we say that a and b do not communicate. We

37

do not restrict ourselves beforehand to binary communication only, but will require that y is
commutative and associative, i.e. for all a,b,c s A we have

y(a,b) = 7(b,a)

and either sfde of these equätions'is defined exactly when the other side is. Now, the
parameters of our theory are A and y. _ ,

In order to incorporate the possibility for communication in the merge operator, we use
an additional auxiliary operator I (communication merge). Now, x I y is just like x II y, but
with the restriction that the first step is a communication step between x and y. In table 4,
a,b e Au{5}, and x,y,z are arbitrary processes.

alb=y(a,b) ify(a,b) is definedCFT
alb = o otherwise CF2
xlly=xlLy+ylLx + xly CM1
alLx = ax ™*
axlLy = a(xlly) £M3
(x + y)lLz = xIz+ylLz CM4
ax I b=(a I b)x CM5
albx=(alb)x CM6
axlby=(alb)(xlly) CM7
(x+y) I z=x I z+y I z CM8
xl(y+z)=xly+xlz CM9_
Table 4. Merge with communication.

6. ENCAPSULATION. . . . ,.
In communicating systems, we often want that communication partners should
communicate, and not occur by themselves. In order to block unwanted occurrences of
such actions, we need the encapsulation operators 3H- Here, H is a set of atomic
actions (H c A), and 9H will block all actions from H, by renaming them mto 5.

Ma) = * J^fTR DT
3n(a) = a otherwise L>Z
aH(x + y) = 3H(x) + 3H(y) D3
9H(X-V) = aH(x)-aH(y) 21
Table 5. Encapsulation.

The axioms in table 1,2,4 and 5 together constitute the axiom system ACP (Algebra of
Communicating Processes) of BERGSTRA & KLOP [BK84]. Typically, a system of
communicating processes xi ,...,Xn is represented in ACP by the expression 3H(XI II... II xn),
where H will contain all communication "halves' occurring in the parallel composition.

This language (with some extra defined operators) has been used extensively in [1] in
system specification. In order to do system verification, it is necessary to tackle the issue of
abstraction as in [BK85].

REFERENCES. ^ TTT., . „ XT U
[B89] J.C.M. BAETEN (ed.), Applications of process algebra, CWI Monograph 8, North-
Holland, Amsterdam 1989. To appear. . .
[BK84] J.A. BERGSTRA & J.W. KLOP, Process algebra for synchronous communication,
Inf. & Control 60 (1/3), 1984, pp. 109-137.
[BK85] J.A. BERGSTRA & J.W. KLOP, Algebra of communicating processes with
abstraction, Theor. Comp. Sei. 37 (1), 1985, pp. 77-121. , , , .
[GV87] R J VAN GLABBEEK & F.W. VAANDRAGER, Petri net models for algebraic
theories of concurrency, in: Proc. PARLE II (J.W. de Bakker, A.J. Nijman & P.C.
Treleaven, eds.), Springer LNCS 259, 1987, pp. 224-242.
[H85] C.A.R. HOARE, Communicating sequential processes, Prentice-Hall, 1985.
[M80] R. MILNER, A calculus of communicating systems, Springer LNCS 92, 1980.

2$

Parametrized Process Categories
Extended Abstract

Roger F. Crew*
Computer Science Department

Stanford University

January 1989

Abstract

In any model of computation that distinguishes concurrency from nondeterminism, it is
useful to be able to independently associate structure with each of these notions. To this end,
we develop a categorical definition of process based on the pomset model parametrized on the
choices of temporal structure and notion of nondeterminism.

1 Introduction

Partial order based models of concurrency [Gre75, Gra81, NPW81, MS80, Pra82, PW84] vary in

their treatment of nondeterminism. Emulating formal language and trace theory, the labeled partial

order (also called a partially ordered multiset — pomset) model of Grabowski [Gra81] and Pratt

[Pra82] defines a process to be a set of behaviours, a behaviour being a set of events, a collection of

timing constraints on the events, and a labeling associating each event with an action from another

set (the alphabet). * In the original version, a behaviour is simply a pomset, that is, the timing

constraints are given by a partial order.

In this scheme, the notion of behaviour is strictly a deterministic one; all events of the behaviour

must occur. Real nondeterminism (as opposed to the spurious nondeterminism introduced by the

observation/interleaving of concurrent events — a distinction that makes sense from the "true

concurrency" point of view) only appears at the upper level where a choice is made concerning

which of the alternative behaviours of the process is to be executed. This "disjunctive normal

'Based partially on work supported by an NSF Graduate Fellowship
'The Petri net literature refers to events as event occurrences and to actions as events.

39

form" representation for processes has the advantage of allowing us to treat the nondeterministic

and concurrent aspects somewhat independently.

In other work, we (with Casley, Meseguer and Pratt [CCMP89]) generalized the notion of behaviour

to include other forms of temporal constraint besides that given by a partial order. Alternative tim-

ing schemes included preorders, prosset orders (as defined in [GP87]), and premetric spaces [Law73],

to name a few. Particularly important to us was the ability to provide rather clean categorical def-

initions for many of the operations on behaviours described in [Gis84, Pra86] (e.g., concurrence,

concatenation, orthocurrence, pomset-definables) which did not depend on the underlying temporal

structure being that of a partial order.

We now want to accomplish the same for full-fledged processes that include actual nondeterminism.

How should the notion of process change as we change the timing schemes for events? As with

the behaviours it is important that we provide suitably abstract definitions for the major process

operations described in [Gis84, Pra86] if we expect to use them in specifications involving notions

of temporal constraint more detailed than that of partial orders.

As with timing schemes, other notions of nondeterminism can also be considered. For example,

[BM84] consider notions providing each alternative behaviour with a path count (number of ways

of producing this alternative) or a predicate governing the occurence of each alternative. These

possibilities should also be included in our process model.

In this paper we achieve both of these goals with our model, in effect composing the two categories

representing the disjunctive and conjunctive structure respectively. We can also introduce structure

between the alternatives as well; the set of alternatives becomes a category including partial stages

in a computation as well as completed behaviours.

The construction starts with an appropriate category of behaviours B (the conjunctive structure).

If we consider behaviours to represent the actions taken by a system or a component of a system,

a behaviour morphism is best viewed for our purposes as mapping the actions/events of subcom-

ponents into those of larger components which contain them. Each event of the subcomponent

appears somewhere in the larger component; the morphism tells us where. One useful consequence

of this particular interpretation is that given a diagram of component behaviours, we can derive

the full system behaviour by the simple expedient of taking a colimit.

When considering the nondeterministic aspect, we notice that this relationship is reversed; each

alternative available to the component implies a particular alternative in the su&component. This

reversal is a consequence of the disjunctive nature of processes versus the conjunctive nature of

behaviours. We then take a process P to be a set AP indexing the available alternatives, together

with a function P : Ap -» B identifying the behaviours.

Contrast this with other models that incorporate the nondeterministic and concurrent aspects into a single
one-level structure (e.g, event-structures).

Vo

Ap can also be thought of as a discrete category with P a functor.

A process morphism / : P -*■ Q then consists of a functor Af : AQ -* Ap (note the reversal) and a

natural transformation £/ : PAf -> Q. (there are variants of this construction taking into account

the alphabets of the behaviours of B which will discussed).

The disjunctive structure is handled similarly, wherein we have a suitable category £ of e.g., predi-

cates or multiplicities. Our notion of process will then also include a (contra)functor P': Ap -*■ £,

while process morphisms now include a natural transformation (f : Q' -* P'Af. We leave open

both the choice of behaviour notion B and the choice of nondeterminism notion £.

As with the behaviours we get, assuming B and £ are sufficiently well behaved, generalizations of

the various process operations defined for many pomset processes described in [Pra86] and [Gis84]

by taking them to be appropriate limits or colimits (e.g., union is a product, concurrence is a

coproduct). Fixpoint constructions [AK79, PS78] can also work. We again, as with behaviours,

obtain a straightforward notion of system composition from taking colimits, albeit a somewhat

different one from those previously proposed (i.e., Y-section [Gra81], utilization [Pra86] and fusion

[GP87]).

References

[AK79] J. Adamek and V. Koubek. Least fixed point of a functor. Journal of Computer and

System Sciences, 19:163-178, 1979.

[BM84] D. B. Benson and M. G. Main. Functional behavior of nondeterministic and concurrent

programs. Inform. & Control, 62:144-189, 1984.

[CCMP89] R. Casley, R. F. Crew, J. Meseguer, and V.R. Pratt. Dynamic structures, (to appear),

1989.

[Gis84] J. Gischer. Partial Orders and the Axiomatic Theory of Shuffle. PhD thesis, Computer

Science Dept., Stanford University, December 1984.

[GP87] H. Gaifman and V.R. Pratt. Partial order models of concurrency and the computation

of functions. In Proc. IEEE Symp. on Logic in Computer Science, pages 72-85, Ithaca,

NY, June 1987.

[Gra81] J. Grabowski. On partial languages. Fundamenta Informaticae, IV.2:427-498, 1981.

[Gre75] I. Greif. Semantics of Communicating Parallel Processes. PhD thesis, Project MAC

report TR-154, MIT, 1975.

[Law73] W. Lawvere. Metric spaces, generalized logic, and closed categories. In Rendiconti del

Seminario Matematico e Fisico di Milano, XLIII. Tipografia Fusi, Pavia, 1973.

til

[MS80] U. Montanari and C. Simonelli. On distinguishing between concurrency and nonde-

terminism. In Proc. Ecole de Printemps on Concurrency and Petri Nets, Colleville,

1980.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures, and domains, part

i. Theoretical Computer Science, 13, 1981.

[Pra82] V.R. Pratt. On the composition of processes. In Proceedings of the Ninth Annual ACM

Symposium on Principles of Programming Languages, January 1982.

[Pra86] V.R. Pratt. Modeling concurrency with partial orders. International Journal of Parallel

Programming, 15(1):33-71, February 1986.

[PS78] G.D. Plotkin and M.B. Smyth. The category-theoretic solution of recursive domain

equations. Technical Report Research Report No. 60, D.A.I., 1978.

[PW84] S.S. Pinter and P. Wolper. A temporal logic to reason about partially ordered compu-

tations. In Proc. 3rd ACM Symp. on Principles of Distributed Computing, pages 28-37,

Vancouver, August 1984.

«2

Equality-Test and If-Then-Else Algebras:
Axiomatization and Specification

DON PIGOZZI

IOWA STATE UNIVERSITY

Many of the data structures that arise in practice include a Boolean sort together with equal-
ity tests for the elements of each non-Boolean sort; in some cases they also include if-then-else
operations that select elements of a data domain on the basis of a Boolean test. We find a finite
set of conditional equations and a finite set of ordinary equations that axiomatize respectively
the classes of equality-test and if-then-else algebras of each appropriate signature. We show that
for equality-test algebras conditional specification is as powerful as universal specification, and
equational specification is as powerful as universal specification in the presence of the if-then-else
operations. We also investigate the power of conditional and equational specifications when the
equality tests and if-then-else operations are hidden.

Equality-test Algebras
A signature S is an equality-test signature it it has a sort bool with operation symbols and, or, not,
true, false, and, for each sort s £ bool, an operation symbol eqa : s s -* bool. A S-algebra A is an
equality-test algebra if 5 contains a sort bool such that A j00/ is the two-element Boolean algebra,
and, for each s 6 S \ {bool}, SSS40(,/ contains a operation symbol eqs such that

A. . / true, if a = b;
e9,K*)= [false, if a ? b.

The class of all equality-test S-algebras is denoted by ETs; the subscript s is omitted when there
is no chance of confusion.

A S-algebra A is a generalized equality-test algebra if S is an equality-test signature and A
satisfies the following set of equations and conditional equations (<p < ty stands for the Boolean
equation not ipor^fa true).

(Axget!) A standard system of equational axioms for Boolean algebras;

for each s € 5 \ {bool}:
(Axget2) eqa(x,x)fätrue-,
(Axget3) eq3{x,y) < eq3(y,x)]
(Axget4) eq3(x,y)andeqs(y,z) < eq3(x,z);
(Axget5) eqS0(x0,y0)and...andeq3n_1(xn-i,yn-i) < eq3{a{x0,...,xn-i),a(x0,...,xn^)),

for each a 6 SW|J with w = «o^i... sn~im,

(Axgetg) eq3(x,y) » true -n«j.

This set of axioms is denoted by AXGETs, and the quasivariety of all generalized equality-test
S-algebras, i.e., the class of models of AXGETs, is denoted by GETs.

The following theorem is the analogue for generalized equality test algebras of the Stone rep-
resentation theorem (in algebraic form) for Boolean algebras.

H3

GET-Representation Theorem. Every generalized equality-test algebra is isomorphic to a
subalgebra of a Cartesian product of equality-test algebras. More generally, given any set E of
equations, every generalized equality-test algebra that satisfies E is isomorphic to a subalgebra of
a Cartesian product of equality-test algebras that satisfy E.

Corollary. GET is the smallest quasivariety that contains all equality-test algebras. Hence

AXGET is a base for the conditional equations of ET.

Corollary. let K be a subquasivariety of GET defined relative to GET by any set E of iden-
tities. Then the initial algebra of K can be represented as the minimal subalgebra of the Cartesian
product of all equality-test data structures that satisfy E.

It follows that an equality-test data structure can be an initial algebra of K iff it is the only
equality-test data structure (up to isomorphism) satisfying E. In this case it is clearly also the final

algebra of K.

Specification of Equality-Test Algebras
A data structure A is a heterogeneous algebra that is minimal in the sense that it has no proper
subalgebras. If there is at least one ground term of each sort, then a data structure may be
characterized as a heterogeneous algebra in which each element is denoted by a ground term. (A

ground term is any term without variables.)
Let S be any signature, A a E-data structure, and T a set of first-order E-sentences. T is an

initial specification of A if A is the initial object in the category whose objects are the minimal
subalgebras of models of T and whose morphisms are homomorphisms. (If T is a set of universal
sentences, then it is an initial specification in the above sense iff A is initial in the category of
models of T.) T is a final specification of A if A is the final (i.e., terminal) object in the category
of non-trivial minimal subalgebras of models of T. (This particular notion of final specification
is due to Bergstra and Tucker [SIAM J. Comput., 12(1983)]). A specification T is complete if it
is at the same time initial and final. A specification is universal, conditional, or equational if V
is respectively a set of universal first-order sentences, conditional equations (quasi-equations), or

equations.
Let E be and equality-test signature. For each quantifier-free S-formula <p we define a 6oo/-term

<p* with the same variables as tp, by recursion on the structure of <p. If tp is an s-equation t w r,

then 9* = eqs(t,r). (tp A VO* = (<P*) and (**)» (V v ^)* = (*>*) or W)> *"* W = "<*&')'
The definition is extended to universal sentences: If tp is a universal sentence, and

Vx0Va:i. •. Vxn_i¥?'(xo, • • •, a?n-i)

is its prenex normal form with tp' quantifier-free, then tp* = tp1*.
tp" is called the Boolean transform off. For any set T of universal sentences let E(T) = {tp* :

Theorem 1. LetT be an arbitrary set of universal sentences. The relative subvariety of GET
defined by E(T) U AXGET is the smallest quasivariety containing all equality-test algebras that
satisfy T. Hence E(T)li AXGET is a base for the conditional equations of the equality-test algebras

that satisfy T.

This theorem provides the means for converting any universal initial or final specification of an
equality-test algebra into a conditional complete specification.

4V

Corollary. Let T be any set of universal sentences, and let A be an equality-test data struc-
ture. If T is either an initial or final specification of A, then E{T) U AXGET is a conditional
complete specification of A.

Corollary. Every equality-test data structure that has a finite universal initial specification
is computable.

Conditional Specifications with Hidden Sorts and Operations
We extend the results of the last section to data structures that are not equality-test algebras. A
signature E' is an enrichment of S if the sort set 5' of E' includes the sort set S of E and SWJ C S^,
for all ws € S* X S. A E'-algebra A' is an enrichment of a E-algebra A if A is obtained from
A' by disregarding the additional sorts and operations. In this case A is called a reduct of A' and
is denoted by A'|s- A set of E'-sentences is an initial (final, complete) specification of a E-data
structure A with hidden sorts and operations if it is an initial (final, complete) specification of some
E'-enrichment of A.

Let E be an arbitrary signature. The equality-test signature E+ is obtained by enriching E
with a new Boolean sort newbool and a new binary operation eqs for each sort s of E. newbool is
called the hidden sort and the eqa the hidden operations of E+. For an arbitrary E-algebra A the
equality-test enrichment A+ of A is defined in the obvious way.

We have the following extension of Theorem 1.

Theorem 2. Let E be any signature and T any set of universal E-sentences. Let K be the
relative subvariety of GETS+ defined by E(T) U AXGETS+. Then K|s is the smallest quasivariety
containing all E-aigebras that satisfy T. Hence E(T) U AXGETS+ is a base for the conditional
equations of the models of T.

Corollary. Let E be any signature, T any set of universal E-sentences, and A a E-data
structure. If T is an initial specification of A, then E{T)U AXGETE+ is a conditional specification
of A with hidden sort and operations.

In contrast to the case for equality-test data structures, this conditional specification is not
in general complete. In fact, if T is a universal specification of a data structure A of arbitrary
signature E and T has no nontrivial models, then E(T) U AXGET2+ is a conditional complete
specification of A with hidden sort and operations iff T is a universal complete specification of A.

If-Then-Else Algebras
A signature E is called an if-then-else signature if it is an equality-test signature and, in addition,
there exists an operation symbol [-,-,-], : boolss -+ s for each sort s ^ bool. A E-algebra A is
an if-then-else algebra if E is an if-then-else signature, A is an equality-test algebra, and, for each
s e S \ {bool} and all 6 € A400/ and a0,ai € A„

tu iA _ / «o, if * = tTue>
[b,ao,ax\3 -\au otherwise (i.e., 6 = false).

The class of all if-then-else algebras is denoted by ITEs-
Let E be an if-then-else signature, and let AXGITEs be the set of equations obtained from

the axioms AXGETs by replacing the one conditional axiom, eq3(x,y) « true -»• x « y, by two
equational axioms:

[true, x,y]3& x, [eq3(x, y), i, y], ta y.

HS

Any E-algebra satisfying AXGITEE is called a generalized if-then-else algebra. The variety of

generalized if-then-else algebras is denoted by GITEs-

GITE-Representation Theorem. Every generalized if-then-else algebra, is isomorphic to a
subalgebra of a Cartesian product of if-then-else algebras. More generally, given any set E of
equations, every generalized if-then-else algebra that satisfies E is isomorphic to a subalgebra of a
Cartesian product of if-then-else algebras that satisfy E.

Corollary. GITE is the smallest quasivariety and also the smallest variety that contains all
if-then-else algebras. Hence AXGITE is a base for the conditional equations of ITE.

We also have the following analogues of Theorem 1 and its first corollary; compare Bloom and
Tindell [SIAM J. Comput., 12(1983)], Guessarian and Meseguer [SIAM J. Comput., 16(1987)], and

Mekler and Nelson [SIAM J. Comput., 16(1987)].

Theorem 3. Let T be an arbitrary set of universal sentences. The subvariety of GITE defined
by E(T) U AXGITE is the smallest quasivariety and also the smallest variety containing all if-then-
else algebras that satisfy T. Hence E(T) U AXGITE is a base for the conditional equations of the

if-then-else algebras that satisfy T.

Corollary. Let T be any set of universal sentences, and let A be an if-then-else data structure.
If T is either an initial or final specification of A, then E(T) U AXGITE is a conditional complete

specification of A.

The if-then-else enrichments E+ of an arbitrary signature S and A+ of an arbitrary S-algebra

A are defined in the obvious way.
Theorem 2 and its corollary do not carry over intact to if-then-else algebras. Their proofs

depend on the fact that none of the hidden operations of the equality-test enrichment has a visible
sort as target. The best that can be obtained are the following.

Theorem 4. Let S be any signature and T any set of universal E-sentences. let K be the
subvariety of GITEE+ defined by E(T) U AXGITEE+. Then the class of subalgebras of K|s is the
smallest quasivariety that contains all E-algebras that satisfy T. Hence E(T) U AXGITEj is an
equationai base for the conditional equations of the models of T.

Corollary. let T be any signature, T any set of universal E-sentences, and A a E-data
structure. If T is an initial specification of A, then A is isomorphic to the minimal subalgebra of
B|E where B if the initial algebra of the subvariety of GITE defined by E(T) U AXGETS+.

Thus a finite universal initial specification of an arbitrary data structure A can always be
transformed into a finite equationai initial specification of a generalized if-then-else-algebra B with
the property that A is a subalgebra of the reduct of B. A need not be the entire reduct of B however,
so in general we do not get an equationai specification of A with hidden sort and operations in the

usual sense.
However we do have that, if T is a universal specification of a data structure A and T has

no non-trivial models, then E(T) U AXGITES+ is a equationai complete specification of A with
hidden sort and operations iff T is a universal complete specification of A. Compare Bergstra and
Tucker [Technical Report IW 156, Math. Cent., Amsterdam, 1980].

H<°

On the Algebraic Structure of Petri Net Dynamics
Abstract For AMAST, Iowa City.

David B. Benson
Raju R. Iyer

Computer Science Department
Washington State University

Pullman WA 99164-1210.
dbenson@cs2.wsu.edu

For us, a petri net is a Place/Transition Net. The syntax can be a bipartite di-

graph with constraints and firing rules as in [R82] or categorically motivated monoids as

in [MM88a,MM88b]. The operational semantics of petri nets is, roughly speaking, given

by finite sequences of markings determined by the graph structure, the constraints and the

firing rules. Other related models include [Stk87,Win84,Win87]. Here we say dynamics for

the operational semantics of petri nets.

The dynamics progresses by a convolution, [Ros88,MB84], which is a commutative

monoid on a well supported compact closed structure [Car88]. The algebraic structure

of petri nets follows from the general structure theorems in [CW87,Car88] or indeed earlier

papers.

Since more than one transition can be enabled in a given marking, there may be several

different follower markings from a given marking. Therefore the dynamics is in general

nondeterministic.

In this dynamics there is a natural notion of discrete time. Each time step, or tick,

corresponds to an attempt to cause all the transitions to fire. But, in this dynamics, even

enabled transitions may choose not to fire. So one of the nondeterministic choices is that

HI

no transitions fire on a given tick. Therefore a follower marking may be identical to the

predecessor marking. But this identity does not mean no transition has fired, since there

are petri nets in which the result of certain firings result in the same marking as before the

firing. This is not a defect in the choice of dynamics as the operational syntax. We agree

that the intention of a petri net is solely to move indistinguishable tokens from place to place

in the petri net. If the act of firing is of particular interest, one may add a distinguished

output place to each transition. Each transition adds a token to this distinguished place.

In this modified petri net, the number of tokens in each of the additional places records the

number of times the transition has fired.

The transitions of the petri net specify nondeterministic functions, roughly from input

places to output places, by a delicate transformation from the firing rules to the genera-

tors of the nondeterministic functions. The places of the petri net specify nondeterministic

distribution functions from the places to the inputs to the transitions. These distribution

functions forward tokens to the transitions in all possible ways. The distribution functions

are denoted by A. Additionally, the places of the petri net specify nondeterministic collec-

tion of functions from the outputs of the transitions to the places. The collection functions

simply stack all incoming tokens at the place. These functions are denoted by V.

Finally, we include an image transition for each place. The image transitions simply

copy input to output. This describes the intuition that at any time tick, some or all of the

tokens at a place remain at that place. We send such tokens through the image transition

associated with the place. For example, a petri net with one place, one transition and set of

nondeterministic markings M has a distribution function

A: M —► M®M

H2>

which sends the tokens at the place either to the left or the right in all possible ways. The

tensor is symmetric monoidal, as in [Mac71,Ben82,Ben87,Ben89]. For n tokens, the result

of the distribution is the nondeterministic sum of pairs

nA =]P k ® p.

The collection function from transition outputs to the place has signature

V :M®M —► M.

With k tokens on the left and p tokens on the right, the result of this collection is

k ® pV = k + p

with '+' being the ordinary sum of natural numbers.

The transition of the one place, one transition petri net is associated with the firing

function / : M —► M. There is an image firing function for the place, p : M —► M. The

dynamics, d, of one time tick is the convolution

<f = A(/<g>p)V:M—>M.

These same considerations apply to a petri net with any (usually finite) number of places

and transitions. The wiring diagram between places and transitions require some technical

care, but causes no conceptual difficulties. Similarly, the structure easily extends to colored

tokens and other such variations on the theme.

A category of petri net dynamics has as objects the petri nets and as morphisms non-

deterministic functions which preserve the behaviors. Consider the tensor product of two

petri nets, this being determined by the tensor product of behavioral convolutions. The

full subcategory of petri nets without sources has finite categorical products, these being

the tensor product. The full subcategory of petri nets without sinks has finite categorical

coproducts, these being the tensor product. Thus the full subcategory of petri nets without

sources or sinks has finite biproducts. This is then the situation of [CW87].

Since the convolutional dynamics d is an endomorphsim, standard methods apply to

understanding the iterate over time ticks.

References

[Ben82] Benson, D. B. (1982). "Counting paths: Nondeterminism as Linear Algebra," IEEE
Trans. Software Eng., SE-10, #6 (1984), 785-791

[Ben87] Benson, D. B. "The Shuffle Bialgebra," Proc. 3rd Workshop Math. Found. Pro-
gramming Language Semantics, Springer-Verlag LNCS.

[Ben89] Benson, D. B. (1989). "Bialgebras: Some Foundations for Distributed and Concur-
rent Computation," Fund. Inform., in press.

[Car88] Carboni, A. "Matrices, Relations and Group Representations," Preprint
[CW87] Carboni, A. k Walters, R. "Cartesian Bicategories I," J.Pure Appl. Alg. 49 (1987),

11-32.
[MB84] Main, M. G. k Benson, D. B. (1984). "Functional Behavior of Nondeterministic and

Concurrent Programs," Inform. & Control, 62:144-^89-
[Mac71]Mac Lane, S. (1971) "Categories for the Working Mathematician," Graduate Texts

in Mathematics, Springer- Verlag.
[MM88a] Meseguer, J. k Montanari, U. (1988a) "Petri Nets Are Monoids," SRI-CSL-88-3-

January-1988.
[MM88b] Meseguer, J. k Montanari, U. (1988b) "Petri Nets Are Monoids: A New Algebraic

Foundation for Net Theory," Proc. LICS '88(Edinburgh).
[R82] Reisig, W. (1982) "Petri Nets- An Introduction," EATCS, Monograph's on Theoretical

Computer Science, Springer Verlag- 1982.
[Ros88] Rosenberg, I. G. "Algebraic Properties of a General Convolution," Tech Report,

Mathematiques et Statistique, University of Montreal H3C3J7.
[Stk87] Stark, E. W. (1987) " Concurrent Transition System Semantics of Process Net-

works," Proc. ACMConf. Principles of Prog. Lang., 1987.
[Win84] Winskel, G. (1984)" Categories of Models for Concurrency," Workshop on the Se-

mantics of Concurrency, July 1984-
[Win87] Winskel G. (1987) "Petri nets, algebras, morphisms and compositionality," Inform.

& Comput, 72:197-238.

5o

Display of graphics and their applications, as exemplified by

2-categories and the Hegelian "taco"

1)
F. William Lawvere

A graphic monoid M satisfies identically xyx ■ xy and an
application of M is a right • M-set. Every left ideal of such
an M is also a right ideal, simplifying and structuring the
study of the topos of applications.- An informal process of

■displaying pictures of graphics and applications is exemplified,
with conjectured use in the organization of knowledge. The Hege-
lian organization of knowledge is concretely realized in terms
of adjoint functors on "any" mathematical category, and is used
to give a precise definition of the dimension needed for a dis-
play. A central fragment of the Hegelian scheme is revealed as
an 8-element graphic, whose suggestive display has reminded some
of a taco.

I. INTRODUCTION

By a graphic we will mean any finite category each of whose

endomorphism monoids satisfies the identity xyx = xy ; in parti-

cular, a graphic monoid is a graphic category with one object.

By an application of a graphic category we will mean any right

action of it on finite sets (i.e. any contravariant finite-set-

valued functor on it). If I is any object of a graphic G ,

then GC-,1) is a particular application (often called the right

regular representation in the case of a monoid) and together

these give a full embedding of G into the topos of all appli-
cations of G , to which we freely apply the Cayley-Dedekind-

Grothendieck-Yoneda lemma. If X is any application of the
graphic G , then the "comma" category G/X (whose objects are

the elements of X and whose morphisms determine the action via
the discrete fibration property of the labelling functor

5/

G/x > G) is again a graphic. Thus each particular appli-

cation X of G provides one way G' » G of expanding the

graphic G into a more detailed graphic G' . Even though

graphic monoids G play a central role, we must also deal with

graphics such as G/X with many objects. Similarly, the

category G of all retracts of objects of G (which may be

constructed either abstractly to have as objects the idempotents

of G or concretely as a full subcategory of the category of

applications of G ; note that in the former guise it is

"a itself" which plays the role of 1&) will again have many

objects - indeed the graphic identity xyx = xy implies x = x so

that if G is a monoid then G has an object for every element

of G (some of those objects may be isomorphic in G). The

interest of G '*—> G is that it induces an equivalence between

the associated toposes of applications. We intend to associate

with each graphic Cby a compelling though not yet well-defined

process), a "display" which will reveal much of its structure.

We do associate a well-defined distributive lattice which is it-

self a standard application and which may be considered to con-

sist of refined "dimensions" in that it parameterizes all the

ranks in a Hegelian analysis of the topos of all applications;

through this distributive lattice there is a well-defined ascen-

ding sequence, obtained by the Hegelian process of "resolution of

one unity of opposites by the next"; the length of this sequence

is the geometrical dimension of the display in our numerous

examples.

What is especially striking is that the Hegelian analysis of

any topos turns out to involve graphic monoids which are in fact

bicategories. Thus, the organization of any branch of knowledge,

insofar as it can be mathematical (i.e. teachable), may in some

measure reflect itself in graphic displays. Though proposed [o]

nearly 200 years ago, the Hegelian method of analysis has been

52.

widely under-utilized since then; "conflicting" ideological claims

either that it is inconsistent or that it is too wonderfully fluid

to be made mathematical have conspired to prevent its being widely :

taught. We believe that we have through modest examples shown it

to be consistent (.and non-trivial) and that much of the method

should be made mathematical, which would help those who seriously

want to use it, even that part which remains fluid.

By a constant c in a graphic monoid is meant an element

such that ex = c for all x . The three element monoid with two

constants 2>>ä? (so 3. 3. = t).) has as its applications all the

reflexive directed graphs; that example plays a central role in

[l,2] and suggested the name. Toposes of applications of such

"constant" graphics with more than two constants were investigated

in £2] , partly as a vehicle for explaining some basic topos

theory and partly to determine how they were different from the

two-constant cases in which xiä ,x3, denote the beginning and

ending points of an arbitrary directed edge x. In the course of

that work, the identity xyx = xy was discovered as the least common

generalization of constant (x = c) and identity (x = 1) ; later I

learned that it had been briefly mentioned as a purely formal

generalization in [3J , where the finiteness was noted, and that

in £4] a partial structure theorem for such monoids was proved as

well as a structure theorem for certain more general' monoids using

these as one of the ingredients. (Äs for finiteness, it is imme-

diate that the free graphic monoid on a finite set of letters

consists of all words without repetitions, of which there are only

nl >** i,) . So far I have not found anv previous discussion of
1=0 x"

applications (in either sense) .

In this paragraph (and the next), we make some imprecise

remarks about possible uses. Retrieving stored knowledge presuppo-

ses some consciousness of the structure it has; this structure

is in its particularity fixed by the storage process itself (and

53

in its generality is partly a reflection of the content, i.e.

of the nature of the knowledge stored). Thus in both retrieval

and storage one needs to be explicitly aware of the kind of

structure involved. Here we are momentarily accenting the

"passive" aspect of the structure, the kind of structure that

both codomain and domain of more "active" operations such as re-

write must have (."peeking" may be definable) . Now it is commonly

recognized that commutative operations such as Boolean inter-

section are involved, but also "something further". We here

speculate that non-commuting systems of idempotent operations

may capture some of the further subtlety. The arrangement of

shelves in any science library shows that topological algebra ?

algebraic topology and chemical physics f physical chemistry,

although these are in some sense "intersections". A feature which

seems to be present is that a sub-branch b is~ not only a subset

but reflects things x (.not necessarily in b) to a part bx of

b which is most relevant to x (.bx is a single element in the

generic case of G(-,I) but the idea retains force in general

applications).

As another example, we could assign to every page of every

book the title page of the book that it is in? clearly this

operation specifies the set-of all title pages, but much more.

Such idempotent operations need not commute but on the other hand

would have a rather strong commutation relation reflecting the

hierarchical structure of empty documents within folders within

disks We have pursued the investigations summarized here in

the hope that the "graphical" identity may capture many instances

of this commutation relation. This hope was strengthened by the

recent discovery that that identity arises in the Hegelian scheme

of knowledge. It is said that the German philosopher Hegel,

building on the work of Aristotle and in opposition to the eclectic

listing of categories of sciences by his "metaphysical" predecessor

Wolfe, proposed to generate the main categories by a single dia-

lectical process. The great mathematician Grassmann, partly

inspired by Leiniz, also emphasized the dialectical method in

54

building up his geometrical theory of extensive quantities. What

striking contrast between these, who advanced both knowledge and

its organization, and those to whom x£x is a big issue and

who lead us astray with library-catalogue paradoxes, when more

conscious access to libraries is what is neededl 2^

II. Elementary Consequences of the Basic Identity, with special
reference to ideals

We begin our calculations by pointing out some remarkable

consequences of the graphic identity

aba = ab.

For any right action X of any monoid M , there is for any

element x the stabilizer

Stab(x) = fa£M |xa = x]

PROPOSITION 1 If M is a graphic monoid, then the stabilizer

of any element x of any application X is a saturated submonoid:

ab £stab(x)=^a,b £Stab(.x) .

Proof: xab = x ==5 xa = xaba = xab = x and xb = xabb = xab = x.

For any action the part fixed by all M is a (.trivial)

subaction, but the part fixed by a single a£M, which for idempotent

a satisfies

Xa = £x £ X | xa = a J ,

is usually only a subset (it is a functor of X 1 .

PROPOSITION 2 If jyr is graphic and a£ M and if X is any

application of M , then Xa is actually a sub-application, i.e.

x£Xa=j>xb£Xa for all b£M.

Proof: xa = xz£>(xb)a = xaba = xab = xb z^y xb £ Xa

55

is that
One of the most powerful consequences of the graphic identity

every left ideal is a right ideal

which follows from the next proposition, using the fact that every

ideal of either kind is a union of principal ideals.

PROPOSITION 3 For any element of any graphic monoid M

aM £ Ma

Proof: For every x there is an element xa for which

a
ax = x a,

namely, we can take xa = ax.

Since every element of a graphic monoid is idempotent, it
follows trivially that

every left ideal s is idempotent

in the sense that SS = s . For a general monoid, this would be

equivalent to »for every a, there are u,v for which a = uava».

This would include all groups, and also the monoid of all endomaps

of a 2-element set, which figures in [2] . Perhaps much of what"

follows could be generalized to all monoids satisfying the two

boxed axioms above, but if we assume idempotence of elements, it

can be shown that aM C Ma implies the graphic identity.

Often Ma is much bigger than aM , but as a right ideal it

is a finite union Ub.M of principal right ideals. The smallest

number #(a) of b. required could be considered as a crude
measure of the size of a

s<*

PROPOSITION 4 Ma = U b^M iff

1) b. = b.a for all i

2) for all x,xa = b.x for some i ,

In particular, one of the b. must be a itself.

Proof: xa = b.y for some y so xa = b.xa by idempotence. Thus

xa = b.axa by 1) so xa = b±ax « b±x. Taking x = 1 proves the

last remark.

Normally a principal ideal can"have more than one generator,

but in a graphic the elements are faithfully represented by right

ideals:

PROPOSITION' ' 5 In a graphic monoid, aM = bM=^a = b .

Proof: We have a=bx and b = ay , hence by idempotence a = ba

and b = ab . But a = ba = bab = bb = b.

For principal left ideals we do not have faithfulness but we

do have, since Ma = Mb iff a = ab :

PROPOSITION 6 In a graphic monoid, Ma = Mb iff a = ab and

b = ba iff Stab (a) = Stab(b) iff a,b are the images of c^/c^

under a homomorphism from the three, element monoid with. 2 constants.

Note that aM/-\bM , while a right ideal, is not usually a

principal right ideal and is often even empty. But for principal

left ideal this situation is simpler:

PROPOSITION 7 Mab = Ma f\ Mb
Ml = M

for any graphic monoid. Hence Mab = Mba.

Proof: Mab ^ Mb is clear. By the graphic identity, we also

have Mab £ Ma . If an element x is in both Ma and Mb ,

then x = xa and x = xb by idempotence, so x = xb = xab£Mab.

As Kimura [4] proved and used, the image CM of the homo-

morphism M —> (left ideals, r\) thus defined is actually the

57

universal homomorphism to any commutative graphic monoid

(=semilattice) . Schanuel (.unpublished) showed, as suggested by

Propositions 1 and 6, that this semi-lattice reflection CM can

alternatively be constructed as part of the set of all saturated

submonoids under the join operation on such (.note that Ma - Mb

iff Stab (.a) ^Stab(b)).

Now we recall that in the topos of all applications of M ,

the truth-value application JO. is the one consisting of all right

ideals of M , under the action of each b £ M defined at A by

A:b = jx£M |bx£A]

which is easily seen to be another right ideal if A was. The

universal use of -T2 is: if YCX is any sub-application, then

X ¥ >il defined by

g?x = fa £M | xa £YJ

is an M-equivariant morphism of applications, and the unique one

for which.

x £ Y <^==J> y* = true

(where true = M£,£l) holds for all x in X . In general ^?x

is thought of as the truth-value of the statement nx £Y" , which

value just consists of all available acts which bring about actual

truth. For example, in the case where applications = directed

graphs, there are five truth.-values, two of which are points, one

is a loop at true, and the other two are edges connecting (.in the

two directions) true with false = 0 .

In the case of a graphic monoid we have shown (Proposition 3).

that every left ideal is a right ideal. Even more remarkably, if

we consider the sublattice -^i^f^ &■ (°f t*10 distributive
lattice of all right ideals), which consists of the left ideals, we

have

£8

PROPOSITION- _8 For a graphic monoid M, jfLc-Qis a sub-appli-
cation .

Proof: If S is a left ideal and a£M , then S :a = £b | afa £ s].

We must show that this is again a left ideal. So suppose ab £S

and that c£M ; we must show cb£,S:a , that is that acb £ S

But acb = (aca)b = acab *** Mab £ s since s itself was a left

ideal.

Even though the inclusion of posets fl^c il has both a left

adjoint (A J—> MA) and a right adjoint, neither of the latter

is a morphism of applications. For example, for directed graphs

(where .«J ^true in the ordering, which we suppress) the inclusion

in question is

d

which admits no graph-theoretic retraction (order-preserving or

not) . Note that aM ^ bM =£>Ma £ Mb .

Although applications in general do not have left actions,

we can ask: For which inclusions YC X of applications does the

corresponding characteristic map <P:X —> Q actually factor

through the sublattice il^C £L of left ideals? In the example of

directed graphs, the above picture shows the answer to be: those

subgraphs Y of the graph X for which no directed edge of X

enters Y or leaves Y except on excursion, i.e.

xPo£Y£=> xS^tY for all x .

Now in the generic application X = M , the left multipli-

cation by a may be considered as the reflection of an arbitrary

x to (the "most relevant element of"?) the fixed point set Xa

In a particular application X , left multiplication by a is

usually not defined. However, by proposition 2, XaCX is a

B°l

sub-application, and hence by the universal property of -fl there

is a unique characteristic map <p :X —£• il i and we have

aM * ^x for all x , for even Ma *= CP x. We may ask, when is

¥- (x)£ £1* 7 By definition
a Q

PROPOSITION 9 ^(X)£Ü^ iff

Vb,/\ £ M (xba = xb z=px% ba = xÄ b]

PROPOSITION 10 If X = M and if M consists only of constants

and 1, then <f x £ H^ for all x, a£M.

Throughout this paper we consider only the category of right

actions or "applications'* (categories of left actions are treated

very briefly in the examples in [2J and have rather different

properties).. Thus it must constantly be kept in mind that whenever

we attribute a property such as "connectedness" to a left ideal S ,

we are using our proposition 3 to consider S as an object in the

category of Cright), applications-connectedness of S • as a left

action would mean something quite different! Similarly, when the

set -Tig of left ideals is considered as an object in a category,

it will be (.either as a lattice or) according to proposition 8

as an application.

III. Elementary Examples and their Intuitive Displays

In preparation for listing some examples of graphics, let us

make explicit some facts about the role of constants,

PROPOSITION 11 Every graphic monoid contains constants.

Proof: Since we have assumed finiteness, let c be the product,

in some chosen order, of all the elements of the monoid. Then

ex = c for any x , since x already occurs first as a factor

of c , and the basic identity cancels second occurrences.

(,0

For example, the free graphic monoid on n generators has nl

constants, since all words of maximal length are distinct. Orf the

other hand, all those can be collapsed to one without imposing any

further relations between words of shorter length. Thus (not only

commutative) examples may have a unique constant.

PROPOSITION 12 If c is a constant, then so is ac for any a.

Thus Ma includes all constants, hence any non-empty left ideal

contains all constants. Also if there is a unique constant o ,

we have ao = o for all a

The left action of M on the set T of all constants of o
M may thus fail to be faithful. However, we can always adjoin

new constants, for example via the sub-representation Mux of

the faithful" left regular representation of M on X = M . If

we do that to the four-element free semilattice on two generators

x,y , we get a six-element graphic whose display will turn out

to be the two-dimensional picture

Of course any free graphic monoid does act faithfully Con the

left) on its constants. For example the five-element free graphic

monoid on two generators a,b has the two constants ab and ba,

on which the generators act by interchanging them; however, its

display will turn out to be the one-dimensional:

1
a b

ab ba

The graphic monoid ^ with only three elements, two of

which are constant, is displayed ... -

and all its applications are "one-dimensional", being directed

graohs. It is of wide use in analyzing more complicated graphics,

for example, consider the graphic monoid M which is freely

generated by two elementsd ,3^ subject to the one relation

2,o(= 3, and define dQ -^ • Then

loh = **A = So
3.3 «It* d_ = 3.o<-3
loll 1 1

so that any M-application has in particular an underlying directed

graph, but is more in that o< also acts on the directed edges. In

addition to the defining relation, we have äQc< »o^«* =<*^ = 3Q
so that both 3- remain constants even in M . The definition of

3 says that any x<* ends at the beginning of x , but moreover
o -

^ = CA2-, =3 so that xc< is a loop at x3Q -

edge x in an application carries with it a picture

Thus every

if x is interpreted as a process, we might consider KC< as the
"preparation" necessary for- x . In order to represent M faith-
fully by endomaps, consider one more constant * together with
3 9, and define an operation on this three-element set by
o l ._ The left-ideal lattice Ii£ has o<(3>) =o((9,) = 3 o X o

four elements

, oU*) = * •

0CM3 = M^CMoC C M

uz

but M<7< = Q is not "connected", which will mean that

even as a graphic in its own right, M must be displayed as

one-dimensional. This contrasts with

£\x x i^ = yc

Äl r

o '//////¥////, y. *ih - ^jxi

a two-dimensional, nine element graphical monoid, which like

the above M also receives a homomorphism A^ —» A^ * -^ r

say the diagonal. Along the latter, we also get an underlying

graph, whose display is

In general, if every homomorphism A^ —>M is assigned a color,

then all the underlying graph structures of M could be simul-

taneously displayed.

For another important example, recall that graphs underlie

the theory of categories, but that there are also 2-categories;

underlying the latter are 2-graphs, the generic example of which

is n

*O<2^]^5M

i"j -x

This can be made into a five element (four generator), graphical

monoid by defining & £. = & , D.D. - D. , D± #j - Äj , ^j -&
Every 2-category (for example the 2-category of all graphics, all

functors between these, and all natural transformations between

those) has an underlying application of this monoid, in which

63

the ^D. are the domain and codomain "functors" of any "natural

transformation" S^S^'l and FD. are the domain and codomain

"categories" of any "functor" F . The lattice £±£ turns out to
be a "linearly-ordered set isomorphic to Aoc^O ^1 <2} where 0

stands for the constant Sj. but 1 stands for the left ideal

>^- ^> which is already connected as a right ideal, hence (by

the general theory to be described presently) the graphic itself

has a two-dimensional display.

If to a nontrivial graphic monoid we adjoin a new identity

element, so that the original monoid becomes a connected left

ideal in the new monoid, we get again a graphic monoid of

dimension at least two. If we do this to ^. , and denote the

original identity element by w , we see

a»-

that w is more of a "core" than a "boundary", and moreover that,

since this is a homomorphic image of

- w

a wa b

dimension can be increased by homomorphic image. Since w3. =3.,

in the underlying-graph display of M the cloud 1 condenses into

another arrow parallel to w

In order to describe a certain class of examples, two more

propositions will be helpful.

PROPOSITION 13 The lattice X2.£ of left (=bi) ideals in a graphic

monoid M is linearly ordered iff for every pair a,b of elements

in M
a = ab or b = ba

Proof: This is the condition that Ma - Mb or Mb - Ma, i.e.

that the (semilattice) commutative reflection CM be linearly

ordered. But the left ideals of CM are included surjectively

into the left ideals of M , and the left ideals of a linear semi-

lattice are clearly linearly ordered.

LH

PROPOSITION 14 (Schanuel) Suppose that the endomorphism

monoid of an object A in a category (such as M) satisfies the

graphic identity, and that B is any other object. Then there

is at most one splittable epimorphism A -*-* B . In case A,B
are retracts of a common graphical object I with idempotents

a,b then p exists iff Mb £ Ma , where M is the endomorphism

monoid of I
Proof: Suppose p has splitting section s , but that also q

has splitting section i ; that is ps = lß = qi . Then of
course sp and iq are idempotents at A , but since A is

graphic also ip and sq are idempotents. Better

sq = s(pi)q = Csp) Ciq) Csp) = sCpiqs)p = sp

so that q = p because s is a monomorphism. It is easily
checked that at least one p exists iff b = ba , in the M case.

Thus in any graphic the subcategory of all splittable epi-

. morphisms forms a poset. If -, '■ ■_

A = Bn -^ Bn_1 -» 3n_2 —» . . / -» B0 -fr B_„

is any linear family of splittable epimorphisms in- any category,

and if we consider for each k any non-empty finite set of

sections B, , <-—■—> B. for pv / then the submonoid of endomor-
phisms . of A obtained by considering all composites will be

a graphical monoid. Special interest will attach in part IV.

to the case where we consider two sections for each p^.

Note that the unique retraction I —^ aM "represents" on

the level of elements all the unique inclusions X& C—? X in

the topos of applications of M

The (one-dimensional) graphic monoid with four constants
and five elements (which was described as a "bare unity" in [2J)
can be embedded in the two-dimensional ^ * #A ; the one dimen-

sional connection might be displayed as

LI

c

Another interesting embedding is

PROPOSITION 15 The free graphic monoid P on two generators

a,b can be embedded in J^ * 4-^ * ^^ .

Proof: Note that M = ^. * ^, has a pair of elements f,s such

that s 7* fs = sf 7* f . For any such M , F can be embedded

in Mx^ by sending a =\f,3Q>, b = ^3,^) .

IV. unity and Identity of Opposites in Bicategories and precise

Definition of the refined and coarse Dimensions of Displays

In order to clarify the notion of dimension which arose in

our intuitive displays of graphics, as well as to provide an

infinite number of examples of graphics arising from non-idempotent

mathematical structures, consider the following

DEFINITION A functor G.—=► 3 will be called a unity-and-

identity-of-opposites (UIO). iff it has both left and right adjoints

and one of the latter is full and faithful (.hence both are). Then,

denoting by L and R the two idempotent endofunctors of CL

obtained by composition, we have also LHR and LR = L, RL = R.

The two adjoints are the inclusions of two opposite sub-

categories united in CL , yet identical with Q . The terminal

functor CL—* 1 is a UIO iff CL has both initial and terminal
objects; the latter may be called non-being and pure being resp.,

and in general L .is "non" whatever attribute (of CL\ R is the

"pure" form of. If CL is a topos then fh will automatically be

a tooos as well; this applies to our fundamental class of examples,

(p(e

where CL is the category of all.applications of a given graphic.
In case ß is a topos, R is called the /S-sheafification, and

"non" sheaves may be called ^-skeletal. The set of all UIO's

with a given Ci forms a poset with respect to the "greater than"
ordering Q,

This poset is often small even when Q. is large and is often a
complete lattice, as is shown in a forthcoming joint paper with

Kelly [s2 . For example

PROPOSITION 16 If d is a category of all right actions (on sets)

of a small category C , then the poset of UIO's with domain

is equivalent to the poset of all idempotent two-sided ideals in

the category C , with the empty ideal corresponding to CL—5» %.

Corollary: For the category CX. of all applications of a given
graphic monoid M the poset of all UIO's is parameterized by

the poset of all left ideals of M . In more detail, if S is

a left ideal of M , then an application X is an S'-sheaf iff

every morphism S —> X in d is of the form s f—£• x«s for a
unique element x of X , and on the other hand the S-skeleton

Le (X) C X of any application X is given by

LSX ■ y *■
i.e. all those elements of X that are fixed by some s£S .
Moreover, (since idempotence is automatic and quite unlike the

general case) (not only the suprema but also) the infima in this

finite (distributive!) lattice are computed as ordinary (unions

and) intersections.

We will attribute refined dimension's to all applications

X which satisfy the "negative determination" LgX -2=-» X .

u

In particular, 0 will also be called of dimension-GO and TQ =

the set of all constants of M determines the subtopos A3Q of

all "codiscrete" applications so that o-dimensional means

"discrete": We will assume that M has at least two constants,

which implies that Xi. is connected ny1 = 1) and that the

"components" functor CL—*-*■ BQ (extra left adjoint to the

discrete inclusion) preserves finite products £L,2J . To define

coarse dimensions 1,2,... we will use the following

DEFINITION: If S ^ T are left ideals, say that T resolves

the opposites of S , in symbols

S <<T
a

iff every S-skeletal application is a T-sheaf, i.e. iff R^g = Lg
Because of the nice properties of intersection mentioned in the

corollary to Proposition 16, there is for every S a smallest

S' which resolves the opposites of S ; we may call S» the

"Aufhebung" of S . Then the Aufhebung of pure being versus

non-being is pure becoming versus non-becoming, i.e. codiscrete

(chaotic) versus discrete, since if 0 is to be a T-sheaf,

then there can be no maps T —> 0 , i.e. T must be non-empty,

but by Proposition 12, TQ C= the set of all constants of M)

is the smallest non-empty left ideal; thus (-00)' ■ 0 as

claimed. Since, intuitively, one-dimensional figures are the

dimensionally-smallest ones which permit connecting all those

points that can be connected, still more satisfying is

PROPOSITION 17 0' - 1. That is, TT0LT = TTQ iff "RT
L
0=V Thus

T, is characterized as the smallest left ideal of M which is

connected as a (right) application of M

Proof: Composite adjoints are adjoint composites. Or, if discrete

applications D are to be T-sheaves, then every T —9» D must

come from an element of D ; but elements of D are constant

(non-becoming), hence every T-—> D must be constant (e.g. for

D = 2), hence T must be connected.

60

Corollary; If MN£L] is not connected/ then M is one-dimensional,

whereas if Msfl} is connected and is the "Aufhebung«* of some s

which is in turn an Aufhebung..., then M is at least two-

dimensional.

Here the dimension of M itself is defined in terms of the

length of the sequence T
n+i

= Tn; exPerience C6J w*th other examples
suggests that this length is the dimension for small dimensions

and a simple function of it for higher dimensions.

PROPOSITION 18 If M is the free graphic monoid on k ^ 2

generators, then dim M = 1.

Proof: Since "first letter of a word" is well-defined,
k

MN{I] = ^ a.M

is a disjoint sum in the category of applications, hence not

connected.

While principal right ideals are connected, principal left

ideals need not be, for example, Ma in the free example on a,b :

att C Ma C M

J II II

i la

a <Z ab# C t
t •

a] 0" ba# r
An even smaller example of an "infinitesimal dimension" is

provided by

M =

where G is a left ideal. But note that a left ideal which

contains a connected left ideal is itself connected, for any t

can be moved to a constant by the right action of a constant.

£,<?

Now consider any category Cc with initial and terminal

objects 0,1 and a double resolution of the latter by C r ß

which successively climb Cl -ward d—P S—^ C —£• & . Let

r = pure C , C~ non C t R - Pure ß, L = non Q. The first

resolution means r0 = 0 (which implies Q.77CO if Uis a topos)

while the second, R£ = £ means that there are three (rather than

four) subcategories of Q. "identical" with C . Assume for sim-

plicity that also £l = 1 . Consider the category^ of all endo-

functors of £L definable by composition from these and all natural

transformations definable from the adjunction morphisms. 771 is a

finite non-symmetric monoidal category, and there is only one ob-

ject q = Lr in W. which does not have either a left or a right

adjoint in Tit- it comes from the third embedding of ^ in d .

PROPOSITION 19 The objects of TK under composition constitute

(up to equivalence) a graphic monoid of (-) eight elements which

has five left ideals
0ojofi]c[£,q,r] C[L,B]C(J J

(where we have shown only the elements new at each stage) .

The middle of these (generated by any lower case letter) is already

connected (by the right action of 0 11.

Thus the display of TK.is apparently

Hegelian "taco", a display
of the 3-dimensional
8-element graphic monoid Wl

which reminded some of a taco: All the me-at of Q, is inside 1^ ,

while there are two identical faces L,R with a common edge < and
separate (but identical) edges q,r.

lO

To finish, the proof that >•// ,is really three-dimensional,

we need only shew that the Aufhebung of [^t°f^l is just [_L,RJ,

i.e. does not somehow jump all the way to the top [L~] of the

dimension lattice as happens in other examples. But S =^,q.,rj

is actually principal S = ?lti, while for such principal ideals

it is easily seen that L X = X-t for all applications X of///?

thus for X to be S-skeletal merely means that all elements of

X are fixed by the right action of -c . Suppose X is all

fixed by ^ ; we must show that X is already an [L,RJ-sheaf-,

so consider any morphism [L,R] *• X of applications, which

we must show comes from a unique complete element of X . The

uniqueness is immediate, since if x,y are any two elements of

X with, the same [L,RJ part f , we have xt = yt for all

t£ {~L,R1 , but t = yt is such and we have already assumed X

fixed by Z ' thus x = x/= y/ = y . For the existence of an x

extending the partial element f , note that, while a general

application X consists of a complicated interlocking system

of "tacos", the skeletal condition means that these are all de-

generated with, x = x.Z= xq = xr , i.e. all three "edges" of any

element x coincide; this implies also xL = X/L = xX = x and

similarly xR = x , leaving only the endpoint operators xO, x»l

acting possibly non-trivially: to sum up, such a skeletal }iC~

application is in essence just a directed graph. Now a partial

element f defined only on the faces [L,R] = Ml* has in parti-

cular all its values fixed by A. due .to the skeletal condition,

ftt).. = fiL).I = ftti) = ft£)

f(R) = f(R)£ = £(Rl) = fU)

the last being true because of the Aufhebung condition R-c= -\.

in the definition of 4% itself. Thus the element x = fCc)

seems the likely candidate for a complete (degenerately) three-

dimensional element whose restriction to the seven-element ideal

[L,R] could be f itself. Thus we try to show

7/

f (l)a = f (a)

for all seven a£[L,Rj . For a = L,R we have by the above

f U)L = f(L)L = f(.L)

f (i)R = f (.R)R = f (R) .

(.both of course equal to f(£)). For the two constants a = 0,1

we have f(/)a = f(ia) = f(a) since /o = o,ü,l = 1 • For the

remaining three a = ^,q,r the case a = t is tautologous, and

for a = r,q we have

f (/).r = f C&) = f U)

f(£)q = f(£)Lr = fCfrr) = £(/)

so that we are reduced to showing that

f(r) = fU) = f(.q).

For this we need to use that f is defined also on the two-di-
mensional L,R since otherwise these could be three different
edges (with the same endpoints f (.01 ,f CD) of the directed graph.

But since f (R). = f (Z) ,

fix) = fCRr) = f(.R).r = f(i)r= f(./r) = f(#

and since f(.L) = flZl,
f(q) = f(.Lr) = f(.L)r = f(/)r = f (/r) = f,(£)

so the proof is done.

Of course the above display does not show that^iis a

monoidal category, not just a graphic monoid; if X £ Ct is any

"morsel", then the horizontal slice through the "taco" at X

actually has canonical morphisms of Q (indexed by 1/U) , which

are roughly the "Moore-Postnikov" analysis of X in case

£l=combinatorial topology, as follows:

7Z

Part of the category
structure of lit revealed at the

"morsel" X£,£{by the analysis

£x '.—> LX —* x —> RX —» rX
of X in terms of its 7b and G reflections

measuring how closely the various reflections of X (into the

grasped stages Q , 73) succeed in approximating it.

PROPOSITION - 20 The "slice" obtained fay omitting 0,1 from 4M.

is as a graphic monoid isomorphic to a six-element submonoid of

the monoid of all order-preserving endomaps of a three-element

linearly-ordered set; namely omitting 001, 002, 112, 122 from

the latter corresponds to the former via 0 I—>X. / 1 I—> 3/

2 I—^ r . (Note that y£,q.rr have become constants through this

omission).

The proof is left to the interested reader.

73

NOTES

1) This reseaxch was not supported by any granting agency.

2) I am not a "Hegelian", since I reject Hegel's Objective

Idealism. But Hegel's partly-achieved goal of developing

Objective Logic (as a component of the laws of thought at

least as important as the Subjective Logic commonly con-

sidered to be "all" of Logic) is in a way the program

which the whole body of category theory has been carrying

out within mathematics for the past 50 years. It was

because of some discoveries in the foundations of homotopy

theory that I began a few years ago the study of

The Science of Logic, attempting to extract the "rational

kernel" which, insofar as it truly reflects laws of thought,

should be useful to us in investigations like the one

summarized in this paper.

7H

REFERENCES

fo] Hegel, G.W.F., The Science of Logic, 1812-1813-1816,
L J another shorter version in his Encyclopedia,

Heidelberg 1817, both now in several translations.

[lj Lawvere, F.W., Categories of spaces may not be generalized
spaces, as exemplified by directed graphs, Revista
Colombiana de Matematicas, 20 (1986),"179-188.

J"2J Lawvere, F.W. , Qualitative distinctions between some toposes
of generalized graphs, to appear in Contemporary
Mathematics 92 (1989) (Proceedings of AMS Boulder
Conference on Category Theory and Computer Science
1987) .

3 Schützenberger, M.P., Sur certains treillis gauches, C.R.
u J Acad. Sc. Paris 224 (.1947) , 776-778.

|_4J Kimura, N., The structure of idemootent semigroups I,
Pacific J. Math. 8 C19581", 257-275.

j_5j Kelly, G.M. , and Lawvere, F.W. , On the complete lattice of
essential localizations, to appear in the Proceedings
of the Louvain meetina in honor of Rene Lavendhomme' s
60th birthday. (.1989)7

[6J Zaks, M., Doctoral Thesis on new aspects of simplicial sets,
in preparation at Macquarie University, North Ryde,
N.S.W. (Australia).

15

The stratified loose semantics:
An attempt to provide an adequate

algebraic model of modularity

Michel Bidoit1

Laboratoire de Recherche en Informatique
C.N.R.S. U.A. 410 "Al Khowarizmi"

Universite Paris-Sud - Bat. 490
F - 91405 ORSAY Cedex France

e-mail: mb%FRLRI61.bitnet@cunyvm.cuny.edu

Abstract

One of the most obvious applications of algebraic methods to software technology are algebraic
specifications. In this paper we investigate how far the development and the reuse of modular
software can effectively be supported by algebraic specifications. We show that modularity cannot
be modelled as easily as one may expect, and we introduce a new semantic framework, the stratified
loose semantics, which can be considered as a generalization of both initial and loose semantics
and which is used to define the formal semantics of the Pluss algebraic specification language.

1 Introduction

The problem considered in this paper concerns the algebraic specification of reusable, mod-
ular software. Since the pioneer work of [11], algebraic specifications have been advocated
as being one of the most promising approach to enhance software quality and reliability.
Algebraic specifications proved to be useful not only to formally describe complex software
systems, but also to prototype them (e.g. by transforming axioms into an equivalent set
of rewriting rules), and to prove the correctness of these software systems (w.r.t. their
formal, algebraic specification). More recently, it has also been shown that algebraic spec-
ifications provide suitable means to compute adequate test sets for the described software
systems, and that they provide also a formal basis to promote software reusability (to
decide whether or not some software is reusable for some specific purposes being shown
equivalent to the "comparison'' of the formal specification of the software to be reused
with the formal specification of the software to be written). An important aim of the
research activity in the area of algebraic specifications is to provide adequate concepts,
languages and tools to cover the whole software development process and to establish their

^his work is partially supported by ESPRIT Project 432 METEOR and C.N.R.S. GRECO de
Programmation.

77

mathematical foundations.

In this paper we shaU focus on the links that can (should) be established between
a structured specification and the corresponding software implemented using a modular
programming language such as Ada, Clu or ML. The problem considered is to define
an algebraic semantic framework such that the various pieces of the specification can be
related to the various modules of the implementation and such that the global correctness
of the implementation can be established from the local correctness of each software module
w.r.t. its specification module.

2 Modularity and loose algebraic specifications

To better understand why and how far both the modularity of the specification and the
modularity of the software interact together as well as the need for a new approach to
the semantics of algebraic specifications, we shall first briefly recall the main underlying
paradigm of the loose approach.

A specification is supposed to describe a future or existing system in such a way that
the properties of the system (what the system does) are expressed, and the implementa-
tion details (how it is done) are omitted. Thus a specification language aims at describing
classes of correct (w.r.t. the intended purposes) implementations (realizations). In contrast
a programming language aims at describing specific implementations (realizations). In a
loose framework, the semantics of some specification S is a class M of (non-isomorphic)
algebras. Given some implementation (program) P, its correctness w.r.t. the specification
S can then be established by relating the program P with one of the algebras of the class
M. Roughly speaking, the program P will be correct w.r.t. the specification S if and only
if the algebra defined by P belongs to the class M.2

Let us now reexamine the above picture in a modular setting. At one hand we have
a modular specification S made of some specification modules Su S2).. .tied together by
some specification-building primitives. On the other hand we have a modular program P
made of some program modules Pi, P2>.... Assume moreover that the program structure
reflects the specification structure. The problem we have to solve is the following one:

2This is of course an oversimplified picture: indeed, the program P should be considered as a correct
implementation of S if and only if the algebra defined by P is "behaviorally equivalent" to some algebra
belonging to M (see e.g. [14]). However, in the sequel we shall adopt the oversimplified understanding of
program correctness, since it will be sufficient to study the impact of modularity. Note also that our picture
does not preclude more refined views about implementations, such as the abstract implementation of one
specification by another (more concrete) one [3,7], or the stepwise refinement and transformation of a spe
into a piece of software [2]. This indeed is the reason why whe shall speak of "realizations" instead of
"implementations".

78

1. To define a notion of correctness such that "the program module P2 is correct
w.r.t. the specification module S2" is given a precise meaning, and

2. To ensure that the local correctness of each program module w.r.t. its specification
module implies the global correctness of the whole program w.r.t. the whole specifi-
cation, and

3. To carefully study how some basic requirements about the modular development of
modular software, as well as their reusability, interact with the design of the semantics
of the (modular) specifications.

It turns out that the main difficulties raised by this goal are twofold:

1. Providing a (loose) semantics to specification modules is not so easy, since from
a mathematical point of view (heterogeneous) algebras do not have a modular struc-
ture.

2. If our intuition and needs about modular software development and the reuse of
modular software can be easily figured out, this is not the case at the level of algebraic
semantics.

In the following section we shall try to provide some insight into the solution we propose
and into the main ideas underlying what we call the "stratified loose semantics™.

3 The stratified loose semantics

For sake of simplicity, we shall focus on the most commonly used specification-building
primitive, namely the enrichment one. Moreover, we shall assume that the modular spec-
ification we consider is made of one specification module S2 that enrich only one another
specification module Si, which in turn may enrich other specification modules.

The specification module Sx determines the specification Si, thejemantics of which
is some class of models (or algebras). The signature associated to Si is denoted by Ei,
while the distinguished subset3 of Ei correspondingjo the generators of the defined sorts
is denoted by fii- The class of models associated to S[is denoted by Mi. Similar notations
hold for the S2 specification module. Note that we have Ex C E2, and fii C f22. U denotes
the usual forgetful functor from E2-algebras to Ei-algebras; the image U{M2) of the class
M2 by the forgetful functor U will also be denoted by M^, as well as the image by U of
some model M2 of M2 is denoted by M2|yjx.

3In Pluss, this distinguished subset is specified apart from the other operations and is introduced by the
keyword generated by.

79

With the help of this simple example, our intuition and needs w.r.t. the modular
development of modular software can be summarized as follows:

1. If some piece of software fulfills (i.e. is a correct realization of) the "large" specifi-
cation S^, then it must be reusable for simpler purposes (i.e. it must also provide a
correct realization of the sub-specification Si)

2. Any piece of software that fulfills (i.e. that is a correct realization of) the sub-
specification Si should be reusable as the basis of some correct realization of the
larger specification %. In other words, it should be possible to implement the sub-
specification S[without taking care of the (future or existing) enrichments of this
specification (e.g. by the specification module S2).

3. It should be possible to implement the specification module S2 without knowing
which peculiar realization of the sub-specification S[has been (or will be) chosen.
Thus, the various specification modules should be implementable independently
of each other, may be simultaneously by separate programmer teams. Moreover,
exchanging some correct realization (say Pi) of the specification module Si with
another correct one (say PJ) should still produce a correct realization of the whole
specification S^, without modification of the realization P2 of the specification module
S2.

The first two requirements can be easily achieved by embedding some appropriate hier-
archical constraints into the semantics of the enrichment specification-building primitive.
Roughly speaking, it is sufficient to require the following property:

Either M2 = 0 (in that case the specification module S2 will be said to be
hierarchically inconsistent) or M^^ = Mi»

The third requirement, however, cannot be achieved without providing a suitable (loose)
semantics to specification modules. There is no way to take this requirement into ac-
count by only looking at the semantics of specifications. The following definition provides
the solution we are looking for by embedding the ideas of the initial approach to algebraic
semantics into the loose one:

Definition (Stratified loose semantics) : ^
Let Mi be the class of the models of the specification S[(according to this current defi-
nition), and M2 be the class of all the ^-algebras finitely generated w.r.t. Ü2, for which
the axioms fix(S2) hold, and which produce Si models when the new part specified by the
specification module S2 is forgotten by the forgetful functor U (i.e. we have U(M2) C Mi).

• If'Mi is empty, the enrichment is said to be (hierarchically) inconsistent and the
semantics of the specification module S2 is empty, as well as the semantics M2 of the
whole specification S2.

QC

• Otherwise, the semantics of the specification module S2 is defined as being the class
7* of all the mappings £• such that:

1. 7i is a (total) functor from Hi to M2.

2. Ji is a right inverse of the forgetful functor U, i.e.: VMi € .Mi: U{7i{Mi)) = Mx.

If the class 7? is empty, then the enrichment is also said to be (hierarchically) in-
consistent.

• The semantics of the whole specification S2 is defined as being the class of all the
models image by the functors % of the models of Mi: M2 = U 7i(Mi)

The class M2 of the models of the specification S^ is said to be stratified by the functors 7{.

Some comments axe necessary to better understand the previous definition:

• In the definition above, the restriction to models finitely generated w.r.t. to the
generators is made to guarantee that all values will be denotable as some composition
of these generators. Thus, structural induction using these generators is a correct
proof principle.

• Our semantics is loose, since it associates a class of (non-isomorphic) functors (resp. al-
gebras) to a given specification module (resp. to a given specification). However, our
semantics can also be considered as a generalization of the initial approach: under
suitable assumptions, the free functor from Ei-algebras to E2-algebras is just one
specific functor in the class 7*.

• It is also important to note that our definition is almost independent of the underlying
institution [13].

As a last remark, we must point out how far our definition solves the problem stated in
the previous section. A program module will be said to be correct w.r.t. some specification
module if and only if it induces a functor belonging to the semantics of the specification
module. From our definition, it is then clear that the "composition" of correct program
modules (i.e. the program obtained by linking together these program modules) is always
a correct realization of the whole specification.

The extension of the definition above to the case where the specification module 52

enriches more than one specification module as well as its extension to other specification-
building primitives (such as e.g. parameterization) do not raise difficult problems and is
described in [4].

81

4 Conclusion

The main significance of the stratified loose framework outlined in this paper is that it is
possible to specify and develop software in a modular way, and that the correctness of the
implementation should only be established on a module per module basis. A formal the-
ory of software reusability, built on top of our stratified loose semantics, is described in [10].

As a consequence of the "hierarchical constraints" required by modularity, it is neces-
sary to state a careful distinction between "implementable" and "not yet implementable"
specification modules. This is done in the Pluss algebraic specification language [4,5], the
semantics of which is defined following the stratified loose approach. Such a distinction
contrasts with all other specification languages developed following either the initial or the
loose approach, such as ACT ONE [6,8], ASL [15,1], OBJ2 [9] and LARCH [12], where
there is only a distinction between various enrichment primitives.

References

[1] E. Astesiano and M. Wirsing. An introduction to ASL. In Proe. of the IFIP WGS.l
Working Conference on Program Specifications and Transformations, 1986.

[2] F.L. Bauer et al. The Munich Project CIP. Volume I: The wide spectrum language
CIP-L. Springer-Verlag L.N.C.S. 183, 1985.

[3] G. Bernot, M. Bidoit, and C. Choppy. Abstract implementations and correctness
proofs. In Proc. of the 3rd STACS, pages 236-251, Springer-Verlag L.N.C.S. 210,
January 1986.

[4] M. Bidoit. Pluss, a language for the development of modular algebraic specifications.
PhD thesis, L.R.I., Univ. Paris-Sud, Orsay, France, 1989.

[5] M. Bidoit, M.-C. Gaudel, and A. Mauboussin. How to make algebraic specifications
more understandable ? An experiment with the Pluss specification language. Science
of Computer Programming, 1989. To appear.

[6] H. Ehrig, W. Fey, and H. Hansen. ACT ONE: An algebraic specification language with
two levels of semantics. Technical Report 83-03, Department of Computer Science,
TU Berlin, 1983.

[7] H. Ehrig, H. Kreowski, B. Mahr, and P. Padawitz. Algebraic implementation of
abstract data types. Theoretical Computer Science, October 1980.

[8] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Springer-Verlag,
1985.

82-

[9] K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.
In Proc. of the 12th ACM Symposium on Principles of Programming Languages,
pages 52-66, January 1985.

10] M.-C. Gaudel and Th. Moineau. A theory of software reusability. In Proc. of
ESOP'88, to appear in Springer-Verlag L.N.C.S., March 1988.

11] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial approach to the specifi-
cation, correctness, and implementation of abstract data types. Volume 4 of Current
Trends in Programming Methodology, Prentice Hall, 1978.

12] J.V. Guttag, J.J. Horning, and J.M. Wing. Larch in five easy pieces. Technical
Report 5, Digital Systems Research Center, 1985.

13] D.T. Sannella and A. Tarlecki. Building specifications in an arbitrary institution. In
Proc. of the Intl. Symp. on Semantics of Data Types, Springer-Verlag L.N.C.S. 173,
1984.

14] Oliver Schoett. Data abstraction and the correctness of modular programming. PhD
thesis, University of Edinburg, 1987.

15] M. Wirsing. Structured Algebraic Specifications: A Kernel Language. PhD thesis,
Techn. Univ. München, 1983.

83

Algebraic Concepts for the Evolution of Module Families *

Hartmut Ehrig, Werner Fey, Horst Hansen, Michael Lowe J Dean Jacobs *

April 5,1989

1 Introduction
The importance of decomposing large software systems into modules to improve their clarity, facilitate
proofs of correctness, and support reusablity has been widely recognized within the software engineering
community. Recently, considerable interest has developed in techniques for keeping track of structural
and historical relationships between modules as a system evolves over time. In this paper, we study these
issues within a formal semantic framework for modules based on algebraic specifications. Our goal is to
clearly formulate fundamental ideas in this area to serve as a guide to the design of methodologies, and
tools for software engineering.

We first present an algebraic concept of modules and their interfaces which is suitable for all phases
of the software development process; from requirements specification to high-level design specification
to executable code. This concept has evolved over the last ten years, from early work on abstract data
types [LZ74, GTW76, TWW78], into its present form [WE86, BEPP87]. We then present a set of fun-
damental operations on interface and module specifications, including horizontal structuring operations
for building up specifications, vertical development steps which refine abstract specifications into more
concrete forms, and realization of interlace specifications by module specifications. A variety of different
program development methodologies can be formulated within this framework. For example, a top-down
approach might start with high-level requirements expressed as interface specifications. Then, vertical
development steps could be taken to elaborate the design, perhaps introducing some horizontal structure.
Eventually, the interface specifications would be realised by module specifications to produce a high-level
description of the implementation. Finally, additional vertical development steps could be taken until
an acceptable implementation is produced.

The algebraic framework allows us to study semantic interactions between horizontal structuring,
vertical development, and realization. For example, we study whether horizontal operations are compat-
ible with vertical steps in the sense that a compound module is refined when its submodules are refined.
These operations and results concerning their compatibilities are discussed in more detail in [EFH+87].

Our most recent work, discussed here and in more detail in our technical report [EFH+88], studies
the construction and evolution of module families. A module family is a collection of conceptually
related modules, usually revisions and variants, which have developed over time. Module families provide
structure to a module library, facilitating the storage, access, and reuse of its members. In addition,
module families allow the members of a group of conceptually related systems to be manipulated all
at once rather than individually. In our framework, a module family is defined to be a set of module
specifications, each of which realizes a common abstract interface. Each module family has a set of
relations, such as refinementjof, revitionjof, and variantjof, defined on its members. We show how
the horizontal operations on interface and module specifications can be applied to entire module families
to produce configuration families and how refinements of the underlying modules induce refinements of
configurations.

'Thii research wai carried out a« part of an exchange program between TUB and USC.
tTU Berlin, Imtitut für Software und Theoretische Informatik, FranklinitraMe 28/29, D-1000 Berlin 10
»CS Dept, University of Southern California, Loi Angelet, CA 90089-0782, jacob.Opollux.uic.edu

85

PAR

S
Figure 1: Module Specifications

2 Preliminaries
An algebraic datatype specification is a triple SPEC = (5, OP, E) where S, OP, and E are sets of sort
symbols, operation symbols, and equations respectively. A specification morphism f:SPECx-*SPECi
between specifications SPECt = (5,-, OPit Ei) for »= 1,2 is a pair of functions / = (fs: Si -* S2, fop:
OPi — OP3) such that for each N: «i,..., i» -* t in OPi we have fop(N): fs('i), • • • • fs(»n) -» /s(*)
in OP2, and for each e in JS?i the translated equation /*(«) is provable from E}. A SP JJO-algebra ,4
consists of a base set A, for each $ € S and an operation NA : 4,,,..., A,„~* A, for each operation
symbol N :*i,...,sn-* a in OP. The operations are required to satisfy all equations in E. SPEC-
algebras and homomorphisms between them define a domain Alg(SPEC) used to define the semantics
of modules. For each specification morphism / : SPECi -* SPEC} there is a forgetful construction
FORGETj :Alg(SPEC3) — Alg(SPECi) which forgets all base sets and operations not in f(SPECi),
and a free construction FREE} : Alg(SPECi)-* Alg(SPEC2) which transforms each SP£?Cx-algebra
in Ai into a freely generated SP-ECj-algebra. For more details, see [EM85].

3 Module and Interface Specifications
A module specification MOD = (PAR, IMP, EXP, BOD,»', e, J, v) contains four algebraic datatype spec-
ifications.

• The import part IMP identifies the sorts and operations which are to be brought into into the
module. In general, the equations in the import part describe only essential or unusual properties
of these operations; their complete definition is left up to the imported module.

• The export part EXP identifies those sorts, operations, and equations that are visable outside the
module. The export part can be used to hide the representation of data and functions, and to hide
auxiliary sorts and operations.

• The parameter part PAR contains sorts, operations, and equations which are common to the import
and export parts. These components are intended to be generic parameters of the entire modular
system and may be instantiated with particular values.

• The body part BODY contains equations which define the operations of the export part in terms
of the operations of the import part. The body may contain auxiliary sorts and operations which
do not appear in any other part of the module.

These algebraic datatype specifications are connected by specification morphisms t : PAR —* IMP,
e:PAR-* EXP, s:IMP-*BOD, and v:EXP-*BOD such that the diagram in figure 1 commutes.
The semantics of MOD is given by the function SEM : Alg(IMP) —♦ Alg(EXP) mapping import
algebras to export algebras as follows: SEM = FORGET, o FREE,. A module specification is said
to be correct if it is strongly persistent, i.e., if the free construction FREE,: Alg(IMP) —» Alg(BOD)
leaves the semantics of every import algebra unchanged.

Horizontal structuring operations are used to build up module specifications. The most commonly
used horizontal operation is composition. The composition of module specifications MODi and MODt,
denoted MOD\ m MODj, connects the import part of MODi with the export part of MOD], as shown
in figure 2. The connection is established by a pair of specification morphisms h\ :IMP\ —* EXP2 and
hj'.PARi —»PARi. The composite module MODs has the same import part as MODj, the same export

8&

PAR3 = PARI — EXP1 » EXP3

PAR2

IHP3 = IHP2

(1)

si

(4)

dOül

-Ö002 s* ' B005
Figure 2: Composition of Module Specifications

IMP2
S2

B0Ü2

Figure 3: Refinement of Module Specifications

and parameter parts as MODi, and body given by the union of the bodies of MODi and MOD2. The
subdiagrams (1), (2), and (3) must commute and (4) is constructed as a pushout diagram. A fundamental
result here is that, if MOJDi and MOD2 are correct, then MOD3 is correct and its semantics SEM3 is
given by SEM3 = SEMX o FORGET^ o SEM3.

Vertical development steps transform abstract specifications into more concrete forms. The most
commonly used horizontal operation is refinement Intuitively, a refined specification more completely
describes the resources that the module will produce and the resources that are required to produce
them. A refined specification has additional sorts, operations, and equations in its import, export, and
parameter parts. A specification and its refined version are connected by three specification morphisms
rP: PARx — PAR2, rE: EXPX — EXP2, and rj: IMPt -» IMP2 as shown in figure 3. All subdiagrams
in this figure must commute. This is called a weak refinement since it satisfies only basic syntactic
requirements. A weak refinement is called a refinement if the modules are semantically compatible with
respect to their common elements, i.e., if SEMi o FORGET,, = FORGETTa o SEMj.

A fundamental result here is that refinement is compatible with composition. Given (weak) refine-
ments MODi by MOD[and MOD* by MOD3, and well-defined compositions MOD, = MOD^MODj
and MOD'3 = MOD{ • MOD'2, there is an induced (weak) refinement of MOD3 by MOD'3.

An interface specification gives the external features of a module without describing how it is to be
implemented. An interface specification INT = [PAR, IMP, EXP, i, e) is simply a module specification
without a body BODY and the related morphisms s and v. Horizontal operations, such as composition,
and verticul operations, such as refinement, can be restricted to interface specifications. A realization of
an interface specification is a module specification which implements it. A realization is given by a triple
of specification morphisms satisfying the same properties as a weak refinement.

87

4 Module and Configuration Families
We define a module family to be a set of module specifications, each of which realizes a common interface
specification. A module family MODFAM = (INT,(MODj,Tj)jej,REL) consists of an interface
specification INT called the abstract interface of MODFAM, a family of module specifications MODj
and realizations TJ : INT - MODj for each j € J, and a set of relations REL on J. The index set J
is assumed to be empty when a new module family is created. An update of the module family entails
modification of MODj, TJ and the corresponding set J. The set REL is intended to include different
relations, such as refinement, between the versions of MODFAM.

A configuration family is a set of compound modules constructed in a uniform way from a set of
module families. Given an n-tuple of module families MODFAMi = {INTi^MOD^n.^j^RELi)
for i = l,...,n, a configuration family CONFAM = (INT,OP,J,f,REL) consists of an interface
specification INT called the abstract interlace of CONFAM, an n-ary horizontal operation OP, a
version index set J, an n-tuple of version functions / = (/<:/-> Ji)i=i,...,n, and a set of idations
REL on J. The version functions select n-tuples of module family members to be combined, using OP,
to produce members of the configuration family. Each such n-tuple defines one configuration given by
some j 6 J. The corresponding n-tuple is (MOD\j,...tMOD\j) with MOD* a = MODiMj) for
t = 1,..., n. Four basic consistency conditions must hold. For example, version consistency makes sure
that the tuples of modules can be appropriately combined. We have the following fundamental results.

• Induced Module Family: There is an induced module family corresponding to the result of applying
OP to those members of MODFAMi given by the version functions.

• Induced Refinement: Refinements between members of the module families induce refinements be-
tween corresponding configurations in CONFAM provided that certain basic compatibility con-
ditions hold.

• Induced updates: Given an update ot MODFAMi by additional realizations, there is an induced
update oiCONFAM by additional realizations provided that certain basic compatibility conditions
hold.

References
[BEPP87] E.K. Blum, H. Ehrig, and F. Parisi-Presicce. Algebraic specification of modules and their

basic interconnection. JCSS, 34, 1987.

[EFH+87] H. Ehrig, W. Fey, H. Hansen, M. Lowe, and F. Parisi-Presicce. Algebraic theory of modular
specification and development. Technical Report 87-06, TU Berlin, 1987.

[EFH+88] H. Ehrig, W. Fey, H. Hansen, D. Jacobs, A. Langen, M. Lowe, and F. Parisi-Presicce. Algebraic
specification of modules and configuration families. Technical report, TU Berlin, 1988.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer Verlag, Berlin,
1985.

[GTW76] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach to the specifi-
cation, correctness and implementation of abstract data types. Technical Report RC 6487,
IBM, 1976.

[LZ74] B. Liskov and S. Zilles. Programming with abstract data types. SIGPLAN Notices, 9, 1974.

[TWW78] J.W. Thatcher, E.G. Wagner, and J.B. Wright. Data type specification: parameterization,
and the power of specification techniques. In 10th Symp. on Theory of Computing, 1978.

[WE86] H. Weber and H. Ehrig. Specification of module systems. IEEE Tran, on Soft. Eng., SE-12,
1986.

88

An Algebraic Approach to the Early Stages of Language Design

Laurette Bradley

Computer Science and Engineering Department

University of California, San Diego

Mail code C-014

La Jolla, California 92093

email: bradley@cs.ucsd.edu

Introduction

We develop a model of the early stages of language design based on universal algebra, and apply this model to a
key issue in early design. The benefit of an algebraically based design model is that it allows us to rationalize
aspects of design which are otherwise isolated as mysterious processes with little structure. In turn, the benefit of
this rationalization is that is allows designs to be made definite, concrete and visible. It is possible to use such
designs to reason about design issues. The particular issue to which we apply our model is that of reusability of
designs: Suppose a language is designed which lacks an important property. How might the language be altered, or
redesigned, to obtain that property? The particular class of properties that we focus on here concerns the the stages
of evaluation of a language (compile time and run time are examples of stages) and the desire to maximize or
ntinimize the amount of evaluation that goes on at each stage. Our claim is that the usual types of language
definition and language design tools do not aid the designer in exploring language choices, while ours do.

We have not worked out a model that demystifies every aspect of language design, but we do know how to deal
with some important features, and can tell a complete story about abstract representation of "stages of evaluation" in
a language definition, based on a notion of removal of information from an algebraic representation of a language.
[Bradley 88] and [Bradley 89] give more details of some of the underpinings of the approach that is outlined below.
Our goal in this abbreviated paper is to introduce two key notions. One is the notion of an early stage of language
design. An early stage is characterized by a lack of syntax, and by wild experimentation with the structure and
contents of the basic semantic domain. A late stage, in contrast, is characterized by fairly well accepted syntax, a
well understood semantics (informal, at least) and virtually no experimentation with the basic semantic domain. The
second notion we introduce is of staged evaluation of an expression in a language. One of the key concerns of a
language designer in the early stages is to design a language so that it can be efficiently evaluated. This usually
boils down to meaning that efficiency at some stages (such as compile time) will be happily sacrificed to improve
efficiency at other stages (such as run time). This paper outlines a way to examine and manipulate stages of
evaluation early in the formal design of a language.

The early stages of design (informal)

Unlike syntax and semantics, design is not an aspect of artificial languages that has been amenable to
formalization. Most studies of the design of programming languages have been extremely informal ([Ghezzi 87],
[MacLennan 87], [Hoare 73], [Wirth 74], for example). Typically, these treatments are advice on the properties a
language should have, such as orthogonality and readability. More formal approaches to language design, range
from early work on extensible languages to very recent work on semantics based design and tools for language
specification ([Paulson 82], [Lee 87], [Blikle 86] and [Ligler 75]). These approaches are uniformly based on the
idea that language design begins when a syntax is formally defined, and finishes when a notion of semantics is made
precise. More useful are approaches such as Pratt's ([Pratt 83]) describing signifcant paradigm shifts in the design
of languages, and approaches that deal with the design of constructs to solve particular problems, such as [Hudack

e^

88],and[Solworth88].

At a more practical and realistic level language design begins with the design of the semantic domain - the
decision on what is to be represented in the language. This decision requires insight, imagination, and deep
understanding of the particular domain. In the earliest stages of design language designers are not faced with issues
such as whether the constructs in the language are orthogonal or readable. These issues are so generic that advice on
them can not help a designer faced with the particular problems of a specific domain. Some of the realistic
questions of the early design stage are the following. A designer might

• want to develop language constructs for highly parallel operations on list (See [Solworth 88], for
example)

• want to design a language in which software faults are reduced. This requires a thorough understanding
of how software faults occur, followed by a design of constructs to avoid them.

• feel that it is necessary to allow some type cheating in a language, but might also want to restrict it The
designer might want to develop a construct for "structured" type cheating, but may be unsure how the
structuring should be done, (see [Gesenke 77] for a discussion of this in Mesa.)

• want to allow a wide variety of notions for arrays, from static, as in Pascal, to fully dynamic, as in APL,
but may not understand the affects this decision will have on the compilation and run time of the
programs.

The typical, extremely general, advice given in informal treatments of language design is not useful in these sorts
of design situations, and neither are the semantics based language design tools, since they force the designer to start
by giving a syntax, and these issues are prior to that stage.

The early stages of design (formal)

The model of language design that we present here rationalizes design by presenting it as definitional, informative
and concrete. By definitional we mean that the formal expression of the design can be used to define the language.
By informative we mean that information about the language that is lacking in other forms of definition, for example
syntax and semantics is present in the formally expressed design. By concrete we mean designs done in steps so
that they have stable intermediate results, and so that the method of going from one stable intermediate to another is
describable and computable.

The model of language design can be summed up as follows. All language design starts with a world, which has
structure. Informally, a world is anything that can be symbolized, and its structure is a classification of the types of
objects, functions and relations in the world. Formally, a world is a many-sorted algebra, and its structure is
identified with the signature of the algebra.

Language design proceeds as a sequence of decisions on how to represent the objects, functions and relations of
the world. In the early stages of design the crucial step is acquiring new world views by manipulating world
structure. The variation in world views may be extreme - for instance replacing horn clauses without equality by
equational logic in the logic underlying a relational language such as prolog - or it may be minor - choosing a new
name for an object In our model of design each of these manipulations is a mapping from algebras to algebras. The
final result is a design which is expressed as a sequence of such mappings. Designs rationalized in this manner are
then open for inspection and manipulation.

Our model of design is based on three kinds of manipulations. These are

• Metaphor or Structure adoption. This is the most radical kind of manipulation that can be performed on
a world, and is loosely analogous to the working of metaphor in natural language, where the structure of
one domain is adopted to structure another domain. For example, the linear ordering on temperatures,
can be used to order the domain of putters, as in "His putting is hot", in which the implication is that his

10

putting is very "high", or good. With respect to language design, the following are examples of
structure adoption: A construct, such as a new repeat statement, could be added to the language from
another language. A more complex example, which happens quite often, is to adopt structure within the
language from its semantic domain. For example, the semantics of a read statement might involve
checking the next input value to ensure that its type is compatable with the type of the variable being
read to, and invoking an error continuation if it is not Adopting this action of the runtime system into
the language itself is very useful, and amounts to allowing programmer control over exception handling
for read.

• Structure reshaping. In this manipulation the structure of the world is altered, but in such a way that all
the computations expressible in the original world, or some subset thereof, are expressible in the altered
world. This kind of manipulation is exemplified by activities such as forming a derived operation over
the original algebra, merging separate operations into one, or renaming an operation.

• Splitting. In this manipulation the structure of the world is represented joimly by two or more separate
worlds. This manipulation allows the language designer to introduce stages of evaluation into the
language, as will be described more below. The intuition behind this is that the designer can control the
stage at which information about objects becomes available by removing them, or parts of them, from
the original algebra and placing them in associated algebras which are available at another stage of
evaluation.

A particular problem concerning "stages of evaluation"

We can apply this formalization of the early stages of language design to an issue which is central to design. The
issue is this: Suppose we have a language L, defined by grammar G and semantics S, which does not satisfy some
property P. What changes we can make to L (that is, to G and S) so that the changed language L\ defined by
grammar G\ and semantics S\ satisfies P? This is clearly a central issue in design; it is also quite vast We
examine instances of this question for a class of properties that capture aspects of time of evaluation for expressions
in a program. In particular we restrict our attention to the solution of this problem for properties that concern the
"stage of evaluation" at which certain information is known about a program. For example the property of being
statically typed - i.e. the property that all types can be determined at compile time - is such a property. We will
now discuss the idea of stages of evaluation more generally.

What are stages of evaluation?

The usual way of thinking about language evaluation is timeless. An expression in a language is given a meaning
by the semantic function which maps expressions into meanings and their is no notion of stages in this evaluation.
Yet in both natural and artificial languages there are many examples of languages whose semantics are given in
stages. For example, in natural language semantics the classical treatment of intension and extention is a strategy
for separating the "meaning" of a sentence in the abstract - the intension, given as a function from possible worlds
to truth values - from the "value" of a sentence as used in a particular situation - the extension, given as a truth
value. In modern unification-based treatments, such as Head-driven phrased structure grammar ([Pollard 87]) a
similar recognition of the stages of evaluation for natural languages is expressed in the treatment of the meaning of a
term as coming about in a cummulative fashion via the interaction of constraints arising from several sources
(phonological, syntactic, semantic, contextual).

Artificial languages too, have this same aspect. In particular, the evaluation of a program in a programming
language can be viewed very naturally as coming about in a cummulative fashion via the interaction of information
about its evaluation that is gathered at various stages. For example, a classical instance of this is the representations
of finite mappings in programming languages. Most languages support the same notion of finite mapping, as arrays,
but they differ widely in the constraints they place on the stages of evaluation at which information about the finite
mapping has to be known. In Pascal all information about the finite mapping, including all dimension, bounds and
component type, has to be present in the text of the program itself; in AlgolW all information about dimension and
component type has to be present in the program text, but the information about the bounds can be delayed until the
execution of the prologue to the block in which the array was declared is executed; finally, in a language such as

<?'

APL no information about the dimension, bounds, or component type has to be fixed in the program text. Rather, all
of this information can be supplied repeatedly at run-time.

This notion of stages of evaluation is important because many aspects of the efficiency of program evaluation are
tied to it Abstractly, when evaluation of a program occurs in stages it is typical that these stages are not viewed
uniformly. It is much more important for some stages to be performed quickly, or using less space, than it is for
others. Each stage uses resources of time or space differently, and it is often a key goal of language evaluation to
shift activities from one stage to an earlier or later one so as to improve the efficiency of a critical stage. Not only
does this discussion characterize the distinction of "compile-time" (where time efficiency is usually not critical)
versus "run-time" (where time efficiency is often critical), but it also characterizes the various stages of compile-
time itself: the ordering of the activities of optimization, intermediate code generation, and register allocation is
often critical to the efficiency of the compiler, and to its ability to perform some activities at all.

How do stages of evaluation show up in a semantics? In a denotational semantics they do not show up at all. In
other kinds of semantics, for example VDM, they show up very concretely as fixed times (compile-time, run-time)
with respect to which program evaluation has to be expressed. One of our goals is to develop a style of writing
semantics so that the staged evaluation of a language can be expressed naturally. Also, so that the properties of the
computation that occur at each stage (time and space requirements, for example) can be analyzed.

What is the significance of stages of evaluation for language design? Given that a language designer has a desire
to represent some given world in a language, and given constraints about what information must be known at
various stages of evaluation, or what activities must happen at various stages, what are a language designers
choices? Clearly, the designer must attempt to design a language so that the constraints on the stages of evaluation
are satisfied.

Given the model of design that we propose, we can describe the range of languages that could be used as
languages for some underlying world of interest Also, we can show how a language that lacks some property can
be can be redesigned to acquire it

The designer's choices: How stages of evaluation are manipulated in designs

The goal of the current work is to be able to express the important practical phenomena of stages of evaluation in
terms of removal of information from an algebra representing a language or world. Also, we want to be able to
reason about solutions to problems in languages concerning stages of evaluation. The removal of information from
an algebra forces the need for a later stage of evaluation in which the information is presented. There are two
important aspects of this. One is that when information is removed from an algebra the meanings of the remaining
objects have to change. Intuitively, if one designs a language to represent some world, one would expect that the
meanings of the constructs in the language would have to change in proportion to the difference between the
structure of the world and the structure of the language. In the case of splittings the meanings of the constructs left
behind are functions of the information removed. The second important aspect is that evaluation that took place at
one stage before might now be shifted to another stage, and that this shift might be unacceptable for reasons of
efficiency.

In the case that the shift of evaluation to another stage is unacceptable, the language designer has two choices.
One is to simply undo the design step that introduced the shift of parts of the evaluation to the new stage. The other,
more interesting alternative, is to attempt to incorporate into the language a version of the actions that have been
delayed to a later stage. Algebraically, this amounts to raising semantic operations to the level of the language.
Although it was, of course, designed by completely different methods than the ones we propose, the Algol68 variant
case statement provides an excellent example of the one of the kinds of constructs that emerges from this strategy of
incorporating late stage semantic activities into the language itself in our design model. This statement forces the
programmer to explicitly code for the checking of the current type of the variant, and to provide statements to be
executed in the case of any possible outcome of this check. This assures that type correctness of the program can be
determined at compile time, even though the presence of variants for which value and type information is delayed
until runtime would seem to preclude that.

U

Bibliography

[Blikle 87] Blikle, A., "Denotational Engineering or from Denotations to Syntax", in VDM '87: VDM - F Formal
Method at Work, Springer-Verlag, 1987.

[Bradley 88] Bradley, L., "A Treatment of Languages with Stages of Evaluation", Proceedings of the third
workshop on Mathematical Foundations of Programming Language Semantics, pp. 425 - 443, Springer-Verlag,
1988.

[Bradley 89] Bradley, L., "An Algebraic Approach to the Early Stages of Language Design", Full paper in prepara-
tion

[Geschke 77] Geschke, C, Morris, L, Satterthwaite, E., "Early Experience with Mesa", in Communications of the
ACM, August 1977, v. 20, no. 8,1977.

[Ghezzi 87] Ghezzi, C. Jazayeri, M., Programming Language Concepts 2nd edition, John Wiley and sons, 1987.

[Gopinath 89] Gopinath, K. Hennessy, J., "Copy Elimination in Functional Languages", Proceedings ACM Sympo-
sium on Principles of Programming Languages, 1989.

[Hoare 73] Hoare, C. A. R., "Hints on Programming Language Design", Keynote address given a ACM
SIGACT/SIGPLAN Conference on Principles of Programming Language. Boston: October, 1973. See also, Stan-
ford University Computer Science DepL, Technical Report STAN-CS-74-403.

[Mou 88] Mou, Z., and Hudack, P., "An Algebraic Model for Divide-and-Conquer and its Parallelism", The Journal
ofSupercomputing, 2, pp 257-278,1988.

[Lee 87] Lee, Peter and Pleban, Uwe. "A Realistic Compiler Generator Based on High-Level Semantics", Proceed-
ings ACM Symposium on Principles of Programming Languages, pp 284-295,1987.

[Ligler 75] Ligler, G. T, "A mathematical approach to language design", Proceedings ACM Symposium on Princi-
ples of Programming Languages, 1975, p41-53.

[MacLennan 87] MacLennan, B. J., Principles of Programming Languages: Design, Evaluation, and Implementa-
tion, Holt, Rinehart and Winston, 1987.

[Paulson 82] Paulson, L., "A semantics-directed compiler generator", Proceedings ACM Symposium on Principles
of Programming Languages, pp 224-233,1982.

[Pratt 86] Pratt, V., "Five Paradigm Shifts in Programming Language Design and their Realization in Viron, a
Dataflow Programming Environment" Proceedings ACM Symposium on Principles of Programming Languages, pp
1-9 1983.

[Solworth 88] Solworth, J., "Programming Language Constructs for Highly Parallel Operations on Lists", The Jour-
nal ofSupercomputing, 2, pp 331-347,1988.

[Wirth 74] Wirth, N., "On the design of programming languages", appearing in Information Processing 74, North-
Holland publishing company, 1974.

13

Algebraic methods in programming language theory

Carolyn Talcott
Stanford University

CLT@SAIL.STANFORD.EDU

1. Overview

The point of this paper is to describe a challenging application of algebraic methods
to programming language theory. Much work on the theory of Scheme-like languages
(applicative, but not necessarily functional) has an essentially algebraic flavor [Talcott 1985]
[Felleisen, Wand, et.al. 1988]. Thus it seems appropriate to make the algebraic aspect
explicit. This would allow us to take advantage of the work in algebraic methods to extend
and generalize existing work and to facilitate application of the results. Full support of this
application of algebraic methods will require bringing diverse results together in a single
enriched framework.

The goal of our work is to develop a general semantic framework that provides a formal
basis and tools for a wide range of programming activities such as: design and implementa-
tion of languages; dynamic language extension; building programming environment tools;
specifying programs, including programs that operate on other programs; proving properties
of programs; and program transformation, including compiling, high-level optimizations,
partial evaluation, programming-in-the-large, and program derivation.

To support such a range of activities it is necessary to support a variety of program-
ming paradigms and to provide many views of programs: programs as data to construct,
transform, and annotate; programs as descriptions of computation to execute and analyse;
and programs as black boxes distinguished only by observable behavior. To effectively use
the various views of programs one also needs formal connections relating them.

An algebraic setting provides a unifying framework for the various views of programs.
The use of syntactic algebras, data algebras, and algebras of computation states provides
a uniform treatment of data, textual, and control abstraction mechanisms in languages.
The semantic equivalence relations induced by models of a specification correspond to a
generalization of the notion of comparison relation [Talcott 85] with equivalence in terminal
models being the maximal such equivalence. Placing our work in an algebraic setting also
increases the potential for cross fertilization with other approaches such as abstract actions
[Mosses 84] and the categorical view of computation [Moggi 89].

t This research was partially supported by DARPA contract N00039-84-C-0211

<\5

2. Applicative languages

We start from Landin's view of programming languages as enriched versions of the
lambda calculus [Landin 66]. Particular languages are determined by choices for abstract
computation states, primitive data, and primitive operations to enrich the basic mech-
anisms of naming, abstraction, and application. Within this framework we can treat a
variety of programming primitives including functional abstractions, control abstractions,
objects with memory, dynamic environments, and reflection mechanisms. We study notions
of program equivalence, formal systems for proving program equivalence, tools for com-
piling and transforming, derived computations (non-standard interpretations) such as cost
of execution, reference count, strictness, trace, and abstract interpretations.1 To illustrate
some of the issues we will outline the kernel of this family of languages and discuss various
extensions, and refinements.

2.1. The kernel

The language consists of expressions Exp generated from given sets of variables Var
and constants Con by application and abstraction. Ve is the set of value expressions —
variables, constants, and abstractions.

Ve = Var + Con + AVar.Exp Exp = Ve + app(Exp, Exp)

We adopt the convention that exp, exp0, .. .range over Exp, ve, ue0,.. .range over Ve, and
similarly for other syntactic and semantic domains. The basic semantics is given in terms of
computations states and transitions. The semantic domains include values (Val), environ-
ments (Env), continuations (Cnt), and states (St). Values include constants and closures
of lambda expressions <\var.exp, env>. Environments are finite maps from variables to
values. Continuations are stack like objects that describe the rest of the computation.
States are tuples with at least a local component and a continuation component. The local
component is either an expression-environment pair or a value.

Val D Con + <AVar.Exp, Env> Env = [Var i> Val]

Cnt = {top} + appi(Exp, Env, Cnt) + appc(Val, Cnt)

St = <Exp, Env, Cnt,.. .> + <Val, Cnt,.. .>

Transitions are defined by the single step relation *-+. The rules for application are:

<app(ezp0, expx), env, cnt> *-> <exp0, env, appi(eip1? env, cnt)>

<val, appi(exp1, env, cnt)> >->■ <exp1,env, appc(uaZ, cnt)>

<val, zpipc(<\var.exp, env>, cnt)> <-+ <exp, env{var := val}, cnt>

For examples see [Talcott 85,86], [Mason 86], [Felleisen 87], [Mason and Talcott 89a,b].

<\<*

2.2. Adding primitive operations

We extend the kernel language to treat such programming primitives as abstract data
types (natural numbers, lists, ...), control abstractions, objects with memory, dynamic
binding, and reflection mechanisms. For example to treat objects with memory we assume
memory operations such as mk, get, set are among the constants. We add cells to the value
domain, a memory component to states, and rules for applying memory operations.

Val D Cel Mem = Cel -^ Val

St = <Exp, Env, Cnt, Mem,.. .> + <Val, Cnt, Mem,.. .>

<val, appc(mk, cnt), mem> i-+ <cel, cnt, mem{cel := val}> 7. if cel $ Dom(mem)

The rules for application are as before since the memory component is unchanged by these
transitions.

2.3. Denotations and program equivalence

To define evaluation we introduce an answer domain Ans and an operation Unload
mapping final states <ua/,top,.. .> to answers. A program context cxt is an environment
together with the non-local components of a state. The evaluator Ev maps expressions and
program contexts to answers and is defined by Ev(ezp, cxt) = ans if <exp,cxt>'»-» st for
some final state st such that Unload(sf) = ans, where £■ is the transitive reflexive closure
of H*. From this definition we can derive the usual equational definition of a denotational
interpreter. We can then abstract on the semantic domains to admit a wider class of models.
The denotation of an expression is then a partial function mapping program contexts to
answers.

By a program equivalence relation we mean an equivalence relation on expressions.
We use several notions of program equivalence. An operational equivalence relation is
determined by a set of program contexts and a notion of indistinguishability of answers. Two
expressions are operationally equivalent if in all relevant contexts they give indistinguishable
answers. Contexts can be either semantic contexts as above or expressions with holes. A
denotational equivalence relation is determined by a class of models. Two expressions are
denotationally equivalent if they have the same denotation in all models under consideration.
A program equivalence may also be characterized as the least or greatest equivalence relation
satisfying some closure conditions. For example a reduction calculus is determined by a set
of reduction rules and the induced equivalence is the congruence closure of the reduction
rules.

2.4. Intensions

As a tool for studying intensional aspects of computation we introduce the notion
of derived computations. Let Dval be a domain of derived values. Derived states are
state-derived value pairs. A derived computation is determined by a derivor map D £
[St x St x Dval ->• Dval]. Rules for transitions on St x Dval are obtained from the
basic transition rules by defining <st,dval> >-* <st',D(st,st',dval)> if st >-> st'. A de-
rived evaluator Dev is obtained from a derived computation by specifying a derived answer
domain Dans and a derived unloading operation Dunld € [St x Dval -*■ Dans]. Then

<\i

T>ev(exp,cxt,dval) = dans if «exp, cxt>, dval> A <st,dval'> for some final st such that
Bnnld(st,dval') = dans. As with the standard evaluator we can abstract from the state
transition definition and also provide a basis for developing computable approximations.
Reference counting and cost analyses can be explained by derived computations. Several
examples of derived computations are worked out in [Talcott 86].

If we want to reason about occurrences of expressions we can replace expressions by
labels together with a map fetch from labels to a pair consisting of a tag and a label
sequence. A tag is either app, Xvar, a constant, or a variable and the label sequence
labels subexpression occurrences. Transition rules are modified accordingly. For example if
fetch(lab) = (app, [lab0, lah]) then <lab, env, cnt> w <lab0, env, appi(fo*i, env, cnt)>.

3. Towards an algebraic theory

To make the algebraic aspects of our theory explicit we work with programming lan-
guage algebras (PL algebras). Following [Broy, et. al. 1987] our PL algebras specify
syntactic and semantic entities in a single (partial) algebraic theory. The theory has a
kernel which is elaborated and refined in various ways. In the algebraic setting these can
all be thought of as operations on theories. Some operations change the theory while some
only change the presentation. Most operations are naturally determined by local features.
Operations illustrated above include: adding new semantic domains, adding summands to
domain equations, adding components to structures, restructuring — replacing states by
expression-context pairs or replacing expressions by locations plus the fetch map, addition
of transition rules, and lifting of transition rules on enriched states.

To study program equivalence we need mechanisms for specifying classes of program
contexts, notions of indistinguishability of answers, and classes of models. We also need
mechanisms for handling reduction rules, for expressing closure operations such as congru-
ence, transitive, and equivalence, and more generally for forming least or greatest relations
satisfying certain conditions. We also need tools for reasoning with and about the resulting
relations based on the form of definition. One goal of our generalized algebraic framework
is to obtain a deeper understanding of operational equivalence by examining richer classes
of observing contexts. Thus it will be of interest to consider non-reachable models and
families of models parameterized by classes of primitive operatations.

To provide tools for program analysis we need tools for abstracting and encapsulating
various levels of specification, for instantiating to particular interpretations, for refining an
interpretation, and for relating different interpretations. This suggests treating abstractions
of specifications and descriptions of particular interpretations as first class objects with tools
for doing "algebra-in-the-large". In many cases we need to focus attention on particular
models by specifying additional axioms and model-theoretic constraints such as initiality,
finality, reachablility. Thus a formal language for expressing some class of model-theoretic
constraints would be of great help.

Finally we will want to embed PL algebras into mechanized reasoning systems to fa-
cilitate semantics based formal reasoning about programs. In particular we will want the
ability to express and reason about general first order or even higher order properties. This
is a challenge both to algebraic methods and to builders of mechanized reasoning to systems
to make natural embeddings possible.

98

4. References

Broy, M., Winsing, M., and Pepper, P. [1987] On the algebraic definition of
programming lanuguages, ACM TOPLAS, 9(1), pp. 54-99.

Felleisen, M. [1987] The calculi of lambda-v-cs conversion: A syntactic theory of control
and state in imperative higher-order programming languages, Ph.D. thesis, Indiana
University.

Felleisen, M., Wand, M., Friedman, D. P., and Druba, B. F. [1988] Abstract con-
tinuations: a mathematical semantics for handling full functional jumps, Proceedings
1988 ACM conference Lisp and functional programming, pp. 52-62.

Landin, P. J. [1966] The next 700 programming languages, Comm. ACM, 9, pp.
157-166.

Mason, I. A. [1986] The semantics of destructive Lisp, Ph.D. Thesis, Stanford Univer-
sity. CSLI Lecture Notes No. 5, Center for the Study of Language and Information,
Stanford University.

Mason, I. A. and Talcott, C. L. [1989a] A Sound and Complete Axiomatization of
Operational Equivalence between Programs with Memory, (LICS89).

Mason, I. A. and Talcott, C. L. [1989b] Programming, Transforming, and Proving
with Function Abstractions and Memories, (ICALP89).

Moggi, E. [1989] Computational lambda-calculus and monads (LICS 89).

Mosses, P. [1984] A basic abstract semantic algebra, in: Semantics of data types,
international symposium, Sophia-Antipolis, June 1984, proceedings, edited by G. Kahn,
D. B. MacQueen, and G. Plotkin, Lecture notes in computer science, no. 173 (Springer,
Berlin) pp. 87-108.

Talcott, C. [1985] The essence of Rum: A theory of the intensional and extensional
aspects of Lisp-type computation, Ph.D. Thesis, Stanford University.

Talcott, C. [1986] Rum: An intensional theory of function and control abstractions,
in: Boscarol, M. Aiello, L. C, Levi, G. (eds.) Workshop on Functional and Logic Pro-
gramming, Trento Italy, Dec 1986, Lecture Notes in Computer Science 306 (Springer-
Verlag).

11

Dynamic Extensions of Programming Language Semantics

Die Parpucea
University of Cluj-Napoca

Str. M. Kogalniceanu Nr. 1
3400 Cluj-Napoca, Romania

The increasing requirement for flexibility and efficiency of various complex programming
applications demand the new programming languages to be extensible. The existing lan-
guage extension methods allow only static extensibility of programming languages. These
methods are restricted to be static by language implementation by means of syntax-
oriented compilers and hence, they do not allow dynamic changes (i.e. adaptation or
extension of the language according to the real needs of the language user).

The dynamic extension of programming languages is not a new problem. However,
its actual solution and implementation on specific cases have not been fully explored.
This is due to the fact that the language extension is very complex and difficult to apply
in the environment of language specification by grammar and syntax-directed compiler
implementation controlled by derivations using the specification grammar. We will sketch
in this paper a model for language extensibility based on the dynamic extension of the
language semantics in an environment in which language specification rules are interpreted
as operation schemes of an algebra rather then rewriting rules of a context-free grammar.

The mathematical machinery providing support for the design of programming lan-
guage semantics is the HAS hierarchy [Rus83]. The HAS hierarchy allows the creation of a
formal mechanism for the specification of the concept of an hierarchical abstract computing
system. The objects that belong to such an abstract computing system are represented as
formal expressions which are organized into an algebra of words W [Gra68], [Pur77] and
can be constructed dynamically following a hierarchy of layers[Rus83], each layer being
constructed on top of the previous layers of the hierarchy. Therefore, the concept of an
abstract computing system is considered here as the mathematical support for dynamic
specification of the semantics of a programming language. It is is specified by means of a
hierarchy of heterogeneous algebras.

A heterogeneous algebra is a triple

A = {D,XS,F}

where D is the set of primitive and composed computing objects, ES is the operation
scheme set, consisting of primitive and composed operation schemes, while F is the func-
tion which associate to each operation scheme a € ES a computing operation. The
assumption is that the carrier D of the algebra A is a family of sets D = {A|* =
0,1,...n} and the operation schemes in ES can be organized into a hierarchy ES =

^oj

{HAS (0), HAS (1),.. •, HAS (p)} such that if a € HAS (0) then F{a) is a nullary-operation,
that is, F(a) is a constant in a set Dh 0<j<n. For each t > 0, if a e HAS{i), F{a) has
as the domain a direct product of sets used as ranges of the operations associated with
the operation schemes in HAS{i - 1),... tHAS(0) and as the range a set already used as
the range of operations in HAS{i - l),..., HAS{0), or a new set of D not yet used as the
range of any other operation.

The computation behavior of each operation associated with the operation schemes as
shown above is specified by a collection of specific formal identities.

The objects of the abstract computing system are represented as formal expressions
organized into a heterogeneous algebra of words

W(V) = {V,i;S,F}

where V is a set of symbols used to denote constants of the computing system and for
each a € ES, F{a) is a rule of word formation under the restrictions specified above for
the algebra A.

The notion of semantics dynamic extensibility is expressed by the dynamic character of
the algebras A and W. It allows dynamic definition of new operations in A which supply
new dynamic expression forms in IV. Since A and IV are two similar algebraic structure,
their dynamic extensibility are related by homomorphisms / : A -* IV and e : IV -> A such
that / = c-1 and c = f~l. The construction of these homomorphisms can be sketched
as follows: Since IV is an initial algebra of the class of algebras specified by ES there
exists a unique homomorphism h : IV -* A that coincides with a function e : V -*• D
on the generator set V. On the other hand any surjective function defined on the free
generators of the carrier of the semantic algebra and taking values in the free generators
of the algebra IV can uniquely be extended to an homomorphism. It can be shown that
this homomorphism is an inverse of the homomorphism obtained by extending c to the
homomorphism e* : W -*■ A that evaluates the free generators of IV to the values they
denote and conversely. Moreover, this property is preserved by dynamically extending the
original heterogeneous algebras A and W by taking their carriers as index sets of the family
of sets supporting a new level of heterogeneous algebras. Since the carrier of a programming
language algebra has a finite set of generator classes, this construction can be used to put
together the syntax algebra and the semantics algebra of a programming language into a a
programming language specified by a pair of algebras related as above and to organize them
into a hierarchy of layers. Thus, the process of dynamic extension of the expression forms of
an algebra can directly be applied to the dynamic extension of the programming language
semantics. An application of this result is shown in the context of Clear specification
language in [Bur80]. We illustrate this application developing a semantics model of a
Pascal-like programming language expressed in terms of its representation in a machine
meant to implement it. This is done by layering of the language algebras on the following
levels:

• Let Do be the set of primitive data types of a programming language. This set can

/o2.

be organized as an algebra

A, = {Do,n0iFo:n0-^I}

where fi0 is the set of symbols denoting nullary-operations defined on the carrier
set of the primitive data types, F0 is the function that associates to each a S fi0

its memory representation length in standard units (bytes, words, etc), while I is a
subset of natural numbers. The set I will be taken as the index set of the next level
of the language hierarchy.

• The level 1 of the language hierarchy is defined using the level 0 as the selector set
for the domain of the operations on level 1 and has the form:

Ax = {£>i = {AI« € I}, {XS0)oetto,F0 : A - I, *i}

where:

- D\ represents a partitioning of DQ into classes of data types, the partitioning
criterion being the representation length.

- ES„ is the set of operation schemes providing the definition of the new types of
objects in terms of objects of level 0.

- FQ is a function specifying the domain and the range of all operation schemes of
the new operations while F\ is the function that associates the new operation
schemes with computation rules.

• In order to define the level 2 of the language hierarchy one must consider the man-
ner of data interpretation. This is performed by considering the following algebra
specifying the semantics of level 2:

A2 = {D2 = {Dij\i € JV-.j 6 M}, {2S0iJ)tFt: Dtx M -+ N x M,F'2}

where:

- Dij represents the carrier of the x-th length data type interpreted in the j-
manner.

- ES«,,.. is the set of operations schemes of the new language level.

- Fi specifies the index set of the carrier D2 of the level 2 of the language algebra
while F2' is the function that associates each operation scheme o € HS0.y and a
j-manner of interpretation with a heterogeneous operation specific to the level
2 of the hierarchy.

- The set M contains possible manners of interpretation while the set N contains
possible interpretation lengths.

o3

• The level three of the language algebra hierarchy is specified by

A* = {Dz = {Di\i€l},(i:Si),Fi}

which allows the definition of certain type constructors for the introduction of the
Pascal like data types record, file, set. This level of the language algebra hierarchy
will preserve the carrier of the preceding level and will enrich it with new operations
characteristic to the newly defined data types.

The mathematical machinery developed in [Rus83] under the name of Heterogeneous
Algebraic Structures, HAS-hierarchy, models the construction of the new types of objects
and allows the dynamic extension of a language algebra on a practical unlimited number of
layers. The construction of the new layers of computing objects supported by the language
depends only on the types of objects required by the application and the imagination
and the ability of its constructor. The application of this mathematical machinery for
language development allowing dynamic language extensibility according to the language
user computing needs is shown in [Rus88].

References

[Bur80] Burstall, R.M., Goguen, J. A., "The Semantics of Clear a Specification Lan-
guage", Proceedings of 1979 Copenhagen Winter School on Abstract Software
Specification, pages 292-332, Springer-Verlag 1980.

[Gra68] Grätzer, G., Universal Algebras, Van Nostrand, Princeton, 1986.

[Pur77] Purdea, I., Pic, G., (in Romanian), Tratat de Algebra Modernd, Vol. 1, Ed. Acad.
R.S.R., Bucuresti, 1977.

[Rus83] Rus, T., (in Romanian), Meeanisme Formale Pentru Specificarea Limbajelor,
Monograph, Ed. Acad. R.S.R., Bucuresti, 1983.

[Rus88] Rus, T., "Parsing Languages by Pattern Matching", IEEE Transactions on Soft-
ware Engineering, 14:4, pp. 498-510, April 1988.

I OH

General Logics*

Jose Meseguer
SRI International, Menlo Park, CA 94025, and

Center for the Study of Language and Information
Stanford University, Stanford, CA 94305

The main question addressed in this talk is:

What is a logic?

that is, how should general logics be axiomatized? The talk, based on a recent paper
of mine1, proposes a specific axiomatic answer to this question and applies that answer
to obtain axioms for logic programming.

Beyond their application to logic programming, the axioms given here for a logic are
sufficiently general to have wide applicability within logic and computer science. The
connections between these two fields are growing rapidly and are becoming deeper.
Besides theorem proving, logic programming, and program specification and verifi-
cation, other areas showing a fascinating mutual interaction with logic include type
theory, concurrency, artificial intelligence, complexity theory, databases, operational
semantics and compiler techniques. The concepts presented in this talk are moti-
vated by the need to understand and relate the many logics currently being used in
computer science, and by the related need for new approaches to the rigorous de-
sign of computer systems. Therefore, this work has goals that are in full agreement
with those of J.A. Goguen and R. Burstall's theory of institutions; however, it ad-
dresses proof-theoretic aspects not addressed by institutions. In fact, institutions can
be viewed as the model-theoretic component of the present theory. The main new
contributions include a general axiomatic theory of entailment and proof, to cover the
proof-theoretic aspects of logic and the many proof-theoretic uses of logic in computer
science; they also include new notions of mappings that interpret one logic (or proof
calculus) in another, an axiomatic study of categorical logics, and the axioms for logic
Programming.

"Supported by Office of Naval Research Contracts N00014-82-C-0333 and N00014-86-C-0450, NSF
Grant CCR-8707155 and by a grant from the System Development Foundation.

1 "General Logics" in: H.-D. Ebbinghaus et al. (eds.) Proc. Logic Colloquium'87, North-Bolland,
1989.

i05"

LOTOS: An Algebraic Specification Language for Distributed Systems

Luigi Logrippo
University of Ottawa

Computer Science Department, Protocols Research Group
Ottawa, Ont. Canada KIN 9B4

e-mail: lmlsl@acadvml .uottawa.ca

1. Background
The theory and practice of specification languages for data communications protocols and services
(often called Formal Description Techniques or FDTs) has been the object of much recent
interest Formal and exact specifications of protocols and services are useful in every phase of
the protocol development life-cycle. Even more, they are essential for protocols and services that
are international standards, meant to be implemented in compatible ways across the world. The
specification must capture those features of an implementation that are necessary for it to be able
to communicate with other implementations. Therefore, it is important that the specification be
precise and implementation-independent
The International Organization for Standardization (ISO) has been developing over the years a
family of standardized data communications protocols, called OSI (Open Systems Interconnec-
tion). At the very beginning of this effort it was recognized that, in order for OSI to be a real
standard, it was necessary to provide it with an appropriate FDT, in which OSI standards could
be specified. An international committee (of which the author of this paper is a member) set out
to produce such a standard FDT, and, some years later, the language LOTOS has now become an
International Standard [ISO]. Interestingly enough, the language is turning out to be very
appropriate not only for OSI protocols and services, but also for a wide family of distributed sys-
tems. In this paper, we intend to offer a very brief overview of the basic philosophy of LOTOS
and of research work being carried out around it Much additional information on LOTOS can be
found in [WD][ISO], and in the annual series of Proceedings Protocol Specification, Testing and
Verification, published by North Holland.

2. LOTOS Principles
LOTOS, the Language of Temporal Ordering Specifications, is one of the most precisely defined
languages in use today. Its static semantics are defined by an attributed grammar, while its
dynamic semantics are based on algebraic concepts. LOTOS is made up of two components: a
data type component which is based on the algebraic specification language ACT ONE [EM],
and a control component which is based on a clever mixture of Milner's CCS [M] and Hoare's
CSP [H]. Most of the theoretical framework of the control component, and especially the concept
of internal action are based on Milner's work. In particular, non-determinism is modelled by
internal actions as in [M] rather than by adding special operators as in [H]. The rendez-vous
semantics follow Hoare's "multi-way rendez-vous" concept, by which all processes that share a
gate must participate in a rendez-vous on that gate. Actions, however, can be transformed into
internal actions by hiding them. In this way, further participation in the action of processes out-
side the hide is prevented.
LOTOS dynamic semantics for the control component is expressed in operational terms by infer-
ence rules as in [M], and the operators were chosen in such a way that it has been possible to
prove about them a rich set of algebraic properties, similar to those of [Mj. Therefore, the
language is at the same time "executable" (by virtue of the operational semantics), and amenable
to proof techniques (by virtue of the algebraic properties).
The language is purely recursive in nature, without side effects. It supports process parameteriza-
tion, where it is possible to specify both value and gate parameters.
Some of the most important operators of the control part are: [] (choice), |[A]| (parallel execution
with synchronization via gates in set A), || (parallel execution with synchronization on all gates),

(Ol

Ill (parallel execution in interleave), hide (hiding of gates), » (sequential composition of
processes), and [> (disable, modelling a nondeterministic interruption).
The data part supports parameterized types, type renaming, and conditional rules.
Because of the fact that LOTOS is made up of what its designers viewed as the most valid parts
of CCS and CSP, the language has considerable expressive power. It favors a highly structured
specification style and top-down, as well as bottom-up, design. For example, following some
ideas already present in [H]» "constraint-oriented" specifications are possible in LOTOS, i.e. a
specification can be designed as a collection of processes each one of which imposes its own log-
ical constraints on the overall system behavior (this turns out to be a powerful way to impose
"separation of concerns"). Other styles, useful for different purposes (e.g., implementation
specification, state-oriented specification, etc.) are also possible, and a theory of how to transform
a specification style into another is being developed.

3. Executability of LOTOS Specifications and LOTOS Tools
Because of the fact that LOTOS is (partially) executable, a specification is effectively a "fast pro-
totype" of the entity specified, thus it is possible to exercise a specification of a complex system
at the design stage. This means that design errors can be found much earlier in the software
development cycle than with other techniques.
The two LOTOS interpreters in existence today are described in [L][GHL][WD].

4. Verification in LOTOS
It is possible to carry out in LOTOS proofs such as the ones found in [M][H], and the proof
methods are similar to those found in these references. The best developed proof techniques
involve the concept of "bisimulation" [P][B1]. Proof methods based on the concepts of "traces"
and "refusal sets" [H] are also being considered. Unfortunately however, because of the presence
of internal actions, some of the proof methods developed for CSP, such as fixpoint induction
methods, do not seem to be applicable to LOTOS.
An important open problem is to find a unified verification framework for both the control and
the data part
Of course, the challenging aspect is to be able to prove properties of systems of realistic size. To
this end, computer-assisted verification tools are being envisioned.

5. A Theory of Implementation and Testing
A rich formal theory of implementation and testing is being developed around LOTOS [BB][B].
This means that the relation "I is an implementation of S" is formally defined for two expressions
I and S. This formalization is given by the reduction relation, where I reduces S if: i) I can only
execute actions that S can execute and: ii) I can only refuse actions that can be refused by S.
Intuitively, I can be more deterministic than S, and can contain fewer options. In other words, in
LOTOS the abstraction of a specification with respect to the implementation is represented by a
higher level of nondeterminism.
Similarly, the relation A and B are testing equivalent [DH] has been formally defined as: A
reduces B and B reduces A. Roughly speaking, two specifications are testing equivalent if their
externally observable behaviors are identical. This corresponds to the failure equivalence of
Hoare [H]. By using these concepts, it is possible to derive implementations and test cases in a
formal way from a LOTOS specification.
It must be observed, however, that so far these concepts have been fully developed for restricted
forms of the language only.

6. LOTOS in Practice
Specifications of real-life systems of thousands of lines have been written in LOTOS. Some of
these are on their way towards becoming part of ISO International Standards. Some examples

/OS

are: several OSI layers (Network, Transport, Session), specifications of telephone systems [FLS],
etc. (in addition of course to all best known "textbook" examples such as the Alternating Bit Pro-
tocol, the Dining Philosopher's problem, etc.). Several such examples are included in [VVD].
The language is starting to be used in industrial environments, and the results appear to be quite
promising.

7. A LOTOS Example
The following example, adapted from [BB], is a LOTOS specification for an entity which is able
to accept three natural numbers in any order and stops after printing the largest of them.

01 specification Max3[inl,in2,in3,out] : noexit

02 type integer is
03 sorts int
04 opns
05 zero : -> int
06 succ : int -> int
07 largest : int4nt -> int
08 eqns forall X,Y: int ofsort int
09 largest (zero , X) = X;
10 largest (X , zero) = X;
11 largest (succ(X) , succ(Y)) = succ (largest(X,Y));
12 endtype

13 behavior
14 hide mid in
15 (
16 Max2 [inl,in2,mid]
17 |[mid]|
18 Max2 [mid,in3,out]
19)

20 where
21 process Max2 [vall,val2,max] : noexit :=
22 (vall?X:int; exit(X, any int)
23 II!
24 val2?Y:int; exit(any int, Y)
25)
26 » accept V: int, W: int in
27 max!largest(V,W); stop
28 endproc
29 endspec

The specification is to be read as follows:
Lines 2 to 12 define the type integer with its associated operation largest. This is done according
to the semantics of [EM]. Of course, the standard LOTOS library contains all these definitions,
so normally the user will include them by invoking the library.
Lines 14 to 19 describe the top structure of the specification, which consists of two instantiations
of process Max2. The latter is capable of finding the largest of two numbers, read in any order
from gates vail and val2, and outputting it on gate max. As the two copies of Max2 are instan-
tiated, their gates are renamed respectively inl, in2, mid, and mid, in3, out, resulting in the fact
that the output value computed by one copy is fed to the other over gate mid. Note that mid is

lot

hidden, because it is meant for internal communication between the two instances of Max! only.
Lines 21 to 28 describe process Max2. It allows interleaving between the input actions on gates
vail and val2. Both values input are then forwarded to the action on line 27, which calculates
the largest of them and inputs it.
Lines 22 to 27 could also be written as follows:

vall?X:int; val2?Y; max!largest(X,Y); stop
D

val2?Y:int; vall?X; max!largest(X,Y); stop

and the equivalence between the two specifications could be proved easily by using the simplest
rules of bisimulation.

Acknowledgment Work reported here was funded in part by the Natural Sciences and Engineer-
ing Research Council of Canada, the Telecommunications Research Institute of Ontario, the
Department of Communications, and Bell-Northern Research. Acknowledgment is of course also
due to the work of the colleagues of the LOTOS group, and especially to its two successive
chairmen, Chris Vissers and Ed Brinksma. We are indebted to Souheil Gallouzi for useful com-
ments on an earlier version of this paper.

References
[BB] Bolognesi, B., and Brinksma, E. Introduction to the ISO Specification Language LOTOS.

Computer Networks and ISDN Systems 14 (1987) 25-59. Also reprinted in [WD].
[B] Brinksma, E. A Theory for the Derivation of Tests. In [WD], pp. 235-247.
[Bl] Brinksma, E. On the Design of Extended LOTOS. PhD Thesis, Twente University (NL),

1988.
[DH] DeNicola, R., and Hennessy, M.C.B. Testing Equivalences for Processes. Theoretical

Computer Science 34, (1984), 83-133.
[EM] Ehrig, B., Mahr, B. Fundamentals of Algebraic Specifications. Springer-Verlag, 1985.
[FLS] Faci, M., Logrippo, L., and Stepien, B. Formal Specification of Telephone Systems in

LOTOS. To appear in: Brinksma, E., Scollo, G., and Vissers, C. (eds.) Protocol
Specification, Testing, and Verification IX, North-Holland.

[GHL] Guillemot, R., Haj-Hussein, M., and Logrippo, L. Executing Large LOTOS
Specifications. In: Aggarwal, S., and Sabnani, K. (eds.) Protocol Specification, Testing, and
Verification VII, North-Holland, 1988, 399-410.

[ISO] International Organization for Standardization. Information Processing Systems. Open Sys-
tems Interconnection. LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behavior (ISO International Standard 8807), 1988.

[L] Logrippo, L., Obaid, A., Briand, J.P., and Fehri, M.C. An Interpreter for LOTOS, a
Specification Language for Distributed Systems. Software-Practice and Experience, 18
(1988) 365-385.

[H] Hoare, C.A.R. Communicating Sequential Processes. Prentice-Hall, 1985.
[M] Milner, R. A Calculus of Communicating Systems. Lecture Notes in Computer Science, Vol.

92, Springer-Verlag, 1980.
[P] Park, D. Concurrency and Automata on Infinite Sequences, Proc. 5th GI Conference, Lecture

Notes in Computer Science N. 104, 167-183, 1981.
[WD] van Eijk, P., Vissers, CA., and Diaz, M. The Formal Description Technique LOTOS.

Nort-Holland, 1989.

HO

Modeling Distributed Systems as Distributed Data Types

Steven P. Miller
Jon G. Kuhl

Department of Computer Science
Department of Electrical and Computer Engineering

University of Iowa, Iowa City, Iowa

INTRODUCTION
One of the most difficult problems in the design and verification of distributed systems is the devel-
opment of an appropriate notion of abstraction. In the last few years, the process algebra approaches
of Milner[l], Hennessy[2-3], DeNicola[4-5], Bergstra and Klop[6], and Brookes, Hoare, and Roscoe[7]
have made substantial progress in this area. This paper explores the use of many concepts from the
theory of process algebras within the more traditional framework of abstract data types [8-9].

Distributed data types (DDTs) arise naturally in a variety of situations in which a distributed sys-
tem can be viewed a single object. The distributed nature of such objects manifests itself through
spontaneous, internal operations which may alter the object's externally visible behavior. Formally,
we define a DDT as a heterogeneous algebra supplemented by such internal operations. In our
approach, a distributed system is first specified as a single DDT, then modeled as a family of dis-
tributed objects (which are in turn specified as DDTs) and processes which act upon these objects.
Verification consists of showing that the model correctly implements the specification by offering
only behaviors that are more deterministic than those allowed by the specification.

This procedure may be repeated for each distributed data type used in the model, allowing stepwise
refinement of the specification to any level of detail. At each step, the complexity of analysis (e.g.,
state space explosion) is controlled through elimination of internal operations which do not alter the
observable behavior of the object.

DISTRD3UTED DATA TYPES
We first extend the traditional definition of a signature [8-9] to accommodate the notion of objects
which may alter their behavior through spontaneous internal operations.

Definition 1 An S-sorted distributed signature E =< S,F,I> consists of
• a set S of sort names.
• a family Fw<t of sets of external operation names, where w € S* and s € S. For convenience,
/ € Fw,, is depicted as / : «i X ... X sn-*s where w = *i,..., sn, and F is taken to be U„,,.FW,,.

• a family I, of sets of internal operation names, where s € S. Again, t € I, is depicted as
t: s—*s and I is taken to be U,It.

Example 1 The signature of a distributed, bounded queue of length 3 may be given as E =< S, F, I >
where S = {queue, item} and

F = { nq: —♦ queue, enq: queue X item —» queue,
deq: queue —► queue, next: queue —* item}

J = { n: queue —* queue, T2'. queue —* queue}

In what follows, it will be useful to compare signatures which differ only in their internal operations.

Definition 2 Let E =< S, F, I > and E' =< S', F', V > be S and S' distributed signatures. Then
E C E' (read E is contained by E') if S = S', F = F', and I, C I't V« € S.

A particular DDT is specified as a heterogeneous E-algebra supplemented with spontaneous in-
ternal operations. As in the process algebra approach [1-7], interactions between a DDT and its
environment are synchronous in that a DDT may refuse to participate in an inappropriate operation.
Refusal of an operation is indicated by 0, and we adopt the convention that refusals propagate, i.e.,
f{ai,..., a„) = 0 if Oi = 0 for any 1 < t < n.

Ill

Definition S Let S =< S, F,I > be an S-sorted distributed signature. Then a E-distributed data
type (E-DDT) A consists of:

• a set A, for each s € S (called the carrier of A of sort s).
• an external function fA : Atl x ... x A..-+A, U {0} for each / 6 Fa,t where «/ = slt..., *„.
• an inferno/ function iA : A,->A, U {0} for each t € I,.

Example 2 Let ITEM be a predefined set of objects, u € ITEM, and x,y,z€ ITEMu{X}, where
A is a special symbol not in ITEM representing the absence of an item. A particular DDT, A, for the
signature of Example 1 then consists of the carriers Aqume = {< x,y,z >\x,y,z e ITEMU {A}},
Aitem = ITEM with operations

n^*() = <A,A,A>
enq* (< x, y, * >, u) = < «, y, * > if x = X, 2> otherwise

deq*(< x, y, z >) = < x, y, A > *'/ z ± A, 0 otAeruns«
next* (< x, y, * >) = * if z^X,® otherwise

*iA (< x, y, * >) = < A, x,z > if x ^ A and y = A, 0 otherwise
V*(<x,y,*>) = <x,A,y> if y ^ X andz = X, <Z> otherwise

BEHAVIORS
As described earlier, verification of a distributed system consists of showing that the DDT generated
by a model of the system correctly implements the DDT given as the specification. To define this
more rigorously, we introduce the concept of a behavior.

Definition 4 Let X = {xi,..., x„} be a set and let XQ = X U {0}. Then
1. If x € X0 then {x} is a behavior of X with root{{x}) = x and a«cc({x}) =0.
2.If x € XQ and ßi,...,ßn are (0 < n < oo) distinct behaviors of X, then {x,ßi,...,ßn} is a

behavior of X with root({x,ßi,...,ßn}) = x and aucc({x,ßx ßn}) = {ßx ßn}-

Example S If X = {a, b, e, d} then {0}, {a}, {a, {b}}, and {0, {a, {0}}, {b}} are behaviors of X,
while { }, {a, 6}, and {a, {0, &}} are not behaviors of X.

Behaviors are simply trees in which some of the nodes may be a refusal, 0, and define how the result
of an operation may change over time. For example, {0, {false}, {true}} (read refusal, eventually
false or true), describes the behavior of an operation which is initially refused but must eventually
return either the value false or true. In this example, the refusal is referred to as a transient behavior
while false and true are referred to as stable behaviors. Behaviors may also be finite or infinite. In
what follows, we will consider only finite behaviors.

Definition 5 Let ß be a behavior of X. Then ß is stable if succ{ß) = 0 and transient if suec{ß) ^ 0.
ß is finite if ß is stable or if V6 € succ(ß), b is finite.

A behavior ß implements a behavior ß1 if it is more deterministic, i.e., if every stable behavior of ß
is a stable behavior of ß' and no transient behavior of ß contradicts ß'.

Definition 6 Let ß and ß' be finite behaviors of X. Then ß C ß' (read ß implements ß') if any of
the following are true

1. succ(ß) = succ{ß') = 0 and root{ß) = root{ß')
2. succlß) # 0 and root(ß) = root(ß') and V6 € succ{ß), bQß'
3. succ{ß) ^ 0 and root{ß) = 0 and V6 € succ(^), 6 C £'
4.36' € succ(ß') such that 0 C 6'.

Implementation is a preorder (a relation which is reflexive and transitive) over behaviors and natu-
rally induces an equivalence relation (the kernel of C) over behaviors [3j. Two behaviors are said
to be equivalent if they implement each other.

ill-

Definition 7 Let ß and ß' be finite behaviors of X. Then ß ~ ß' (read ß is equivalent to ß') if
ßQß' andßSß'.

Example 4 {a} ~ {a}, {6}E{a,{6}}, {a}g{a,{6}}, {0,{a}}~{a}, {a, {a, {6}}} ~ {a, {6}},
{a, {0, {a}, {6}}, {6}} ~ {a, {a}, {6}}, {a, {0, {a}, {6}}, {6}} g {a, {a}, {6, {a}}}

IMPLEMENTATIONS OP DDTs
In one sense, an element of a carrier of a DDT possesses not only the capabilities explicitly defined for
it, but also those of all objects into which it may evolve through its internal operations. Accordingly,
we associate each object with the behavior consisting of itself and those objects into which it may
evolve, formally given in Definition 8 as the behavior returned by the r operator. Note that such
behaviors contain no refusals. If every behavior generated by r for a DDT is finite (stable), then
the DDT is said to be finite (stable).

Definition 8 Let A be a E =< S,F,I> DDT and let a € A,. Then

ri*(a) = {a} U {ri*(^(a)) | % € 7. AiA(a) * 0}

If rf(a) is finite (stable), o is finite (stable). If r*{a) is finite (stable) Va € A„ A is said to be finite
(stable) for sort a. If A is finite (stable) Vs € S, A is said to be finite (stable).

Example 5 In the DDT of Example 2,

*£«..(< *, A, A >) « {< x, A, A >} U {*£«„,(< A, x, A >)}
= {<x,A,A>} U {{<A,x,A>} U {*£„,«(< A, A, x>)}}
= {< x,A,A >} U { {< A,i,A >} U { {< A,A,x >} } }
- {<x,A,A>} U {{<A,x,A>i{<A,A,s>}}}
- {<x,A,A>,{<A,x,A>,{<A,A,x>}}}.

This DDT is finite but not stable.

Applying an operation to behaviors also results in a behavior, as described in Definition 9. Note
that behaviors obtained as the result of an operation may contain refusals.

Definition 9 Let A be a finite E =< S, F, I > DDT, / : «x x ... x a„-»a € F, and ßi be behaviors
of A,t, 1 < t < n, such that ft = {&,-, ru,... r<,„,.}. Then

fA(ßi ßn) = {fA(bi,...,bn)}u{fA(ß1 Ä-i.r«,Ä+x /?»)|l<»<*,l</<*}

Example 6 Consider the distributed queue DDT of Examples 2 and 5.

nexf4(*£«,,«(< x, A, A >)) = next*^ x,A,A >,{< A,x,A >,{< A,A,x >}}})
= {nexT*(< x, A, A >)} U {nextA({< A, x, A >, {< A, A, x >}}) }
= {0} U { {nexf*(< A,x,A >)} U {nextA({< A,A,x >}) } }
= {0} U { {0} U { {nex^(< A,A,x >)} } }
= {0} U { {0} U { {x} } }
= {0}u{{0,{x}}}
= {0,{0,{x}}}

Example 7 If ßi = {a, {6}, {c}} and ßi = {d, {e}}, then (omitting the intermediate steps)

/(ft.A) = {/(«,«*), {/M,{/(M)H. {/M).{/('.«)}}> {/(a,«),{/(M)},{/(e,e)}}}

Traditionally, one data type is said to be implemented by another if there exists a homomorphism
from the implementation to the specification. We extend this notion to DDTs by defining a homo-
morphism from behaviors of the implementation to behaviors of the specification.

Definition 10 Let A be a finite E^-DDT and B be a finite EB-DDT such that Efl C EA. Then an
implementation homomorphism $: A—>B is a family of functions < $, : A„—*B, >,es such that

»13

for all/: 3i X ... X sn-*s € F and all < o#l a.„ > € Atl X...Xi4.„

.(/A(^(«.») tit(o..)))E/B('f»(.i(«.i)),-.*f.(*..(0))
where *.(0) = 0 V« € S. If * preserves ~ rather than C, then * is said to be an equivalence
homomorphism.

The existence of an implementation homomorphism guarantees that an implementation can exhibit
only behaviors which are more deterministic than the behaviors allowed by the specification. If
A implements B, then A may be safely substituted for B in any larger context. An equivalence
homomorphism guarantees that an implementation can exhibit all the behaviors allowed by the
specification, and vice-versa. If A is equivalent to B, then A may be substituted for B and B may
be substituted for A in any larger context.

Example 8 Let A be the distributed queue DDT of Examples 1 and 2. Let B be a stable queue of
length 3 (i.e., a DDT with no internal operations) such that B has the same signature as A except that
/,„«.« = 0- Let the carriers of B be Bqaeu. = {w | u; € ITEM*, | u; | < 3} and BiUm = ITEM, and
the operations of B be

m»() - A
enq3 {w,u) = ua> if 1w | < 3, 0 otherwise

deqf(w) — w' if to = v/n, 0 otherwise
next5 (u>) = u if w = to'u, 0 otherwise

where A is the empty string, w € ITEM" such that \w\ < 3, and u € ITEM. Then *,„„,.(< x, y,z>) = xyz
and $««»(«) = « is an equivalence homomorphism from A to B. For example, making use of the
results of Example 6 we have

*«em(nea**(r,JU„(< x, A, A >))) = *«em({0, {0.{*}»)
- {0,{<2>.{*}}}
~ {*}
= {nexiP{x)}
= nex^dx})
= next3 {T*[X))

= nextB{Tfueue{^,um,(<x,X,X>)))

Similar results hold for all possible operations and arguments, establishing that a distributed queue
of length 3 is equivalent to a stable queue of length 3. In verifying any larger system incorporating
a distributed queue, this allows us to substitute the stable specification to simplify the analysis.

BIBLIOGRAPHY

[1] R. MUner, A Caleultu of Communicating System», LNCS 92, Springer-Verlag, New York, 1980.
(2] M. Hennessy and R. Milner, "Algebraic Laws for Nondeterminism and Concurrency", JACM, Vol. 32,

No.l, pp. 137-161, 1985.
[3] M. Hennessy, Algebraic Theory of Processes, The MIT Press, Cambridge, Massachusetts, 1988.
[4] R. de Nicola and M. Hennessy, "Testing Equivalences for Processes,» in Proc. ICALP'8S, LNCS 154,

pp. 548-560, 1983.
[5] R. de Nicola and M. Hennessy, "CCS without r's.» in Proc. TAPSOFT'87, LNCS 249, pp. 138-152,

1987.
[6] J. Bergstra and J. Klop, "Process Algebra: Specification and Verification in Bisimulation Semantics",

Mathematics and Computer Science II, CWI Monograph 4, North-Holland, Amsterdam, 1986.
[7] S. Brookes, C. Hoäre, and A. Roscoe, "A Theory of Communicating Sequential Processes", JACM,

Vol. 31, No.3, pp. 560-599, 1984.
[8] J. Gougen, J. Thatcher, and E. Wagner, "An Initial Algebra Approach to the Specification,

Correctness, and Implementation of Abstract Data Types," Current Trends in Programming
Methodology, Prentice Hall, New Jersey, 1978.

[9] S Kaplan and A. Pnueli, "Specification and Implementation of Concurrently Accessed Data
Structures: An Abstract Data Type Approach," in Proc. STACS'87, LNCS 247, pp. 220-244, 1980.

A FORMAL MATHEMATICAL MODEL FOR DETECTING SUBROUTINE
DEPENDENCES : A LOGIC PROGRAMMING APPROACH

Dan Ionescu, Lawrence Wen
University of Ottawa,Department of Electrical Engineering, 770 King Edward,

Ottawa,Ontario, KIN 6N5, Canada,
email: diopb @ uottawa-BITNET

Abstract: In this paper the problem of sequential Fortran restructuring is considered. The
need of reusing the large amount of scientific programs written in sequential Fortran captured the
attention of various computer scientists since the arrival of parallel computers. This problem needs a
good abstract approach in order to provide an.intelligent software package which can automatically
execute the task.. In this paper the case of subroutine dependences is considered. A formal
mathematical model based on the discrete event system theory is first introduced. Futher results
are obtained bSased on this model. The recurrence property of the model suggested to approach the
implementation through a logic programming technique. An expert system shell was used to easy the
implementation. Practical results and a demonstration package resulted.

1 .INTRODUCTION

The increasing interest in parallel computers and their capabilities to speed-up the execution of
computational intensive scientific programs generated an accrued research to support programmers
with more enhanced programming tools.

Scientific programming characterized by a high-level of floating-point computation usually uses
Fortran programs to implement a requested algorithm A lot of already available sequential code must
be reconsidered and rewritten, or in other words restructured [1], in order to be executed in a parallel
environment.

There are commonly available computers [1], [2], [5] which vectorize the code written in
standard Fortran. The compiler attempts to convert the innermost loops to vector operations.

Even though great progress has been made in automatic code restructuring, the only automatic
system available to date is limited to individual loops [1]. The analysis of parallelism in independent
nested DO loops has been also reported [8]. Parallelism at a larger granularity must be explicitly
specified by the programmer [1].

In this respect, programming environments that could help a programmer to develop explicitly
parallel programs are or have been under research [1], [3] for specific architectures.

In order to efficiently use a parallel multiprocessor system it is necessary not only to achieve the
fine-grain parallelism, through the DO loop vectorization, but also the coarse-grain parallelism such as
subroutine calls.

However, this subject remained untouched because of the complexity of the analysis process for
the parallelism detection. . .

When affirming this we have in our mind the case of multiple levels of subroutine calls which is
obvious in any reasonable and well structured FORTRAN program. As an enforcement of the last
statement we mention the Cray-1 FORTRAN compiler which stops the vectorization when a
subroutine call is encountered [1].

In order to achieve this fine analysis the compiler or other software that can do this, has to be
provided with reasoning capabilities [1]. This means unification, reasoning mechanism, forward
chaining, backtracking a.s.o.

The development of logic programming techniques provides this environment which allows the
computer to deal with problems requiring intelligence. A practical implementation of this piece of
software will be finally in the form of an expert system.

Expert system shells that can interface external libraries in Fortran are excellent environments
that provide a lot of facilities to accomplish the task of parallelizing sequential FORTRAN code.

\\5

The blackboard of an expert system shell provides the storage elements which help to solve this
problem dynamically. On the other hand, the powerful reasoning capabilities of the expert system
provide other necessary complex mechanisms for obtaining the subroutine dependences.

An example a Fortran program containing an arbitrary number of subroutines is processed by
the expert system.

2. PRELIMINARIES

In order to provide a mathematical approach to the detection of subroutine dependences the
following notations will be introduced:

- the set of input variables: U ={ Uk I fk real and integer variables,strings, arrays,etc, k
N}

N)
- the set of output variables: 7= {yk ■ 7k real and integer variables,strings, arrays.etc, k

- the set of commands: C={c \a\l\:ifQgoto 12 else go to I3, fi
V li: (x 1^ 2 x n) := (U. t 2 t n),go to 12 (n>l)l

where li are labels ll= end, l2=l3,e a quantifier free formula, and fi is the finish if
- the set of elementary " subprograms" S 0 ={sk ' sk elementary functions or

subroutines},where an elementary function or subroutine is considered that function or subroutine
which does not call any subprogram.

- the set of all functions or subroutines 5 S0

Under this consideration a subroutine is defined as follows:

s : U x C xP —> Y

The dependence relations are introduced as follows:

Definition 1: Consider i<j in a lexicographical order, the subroutine sj(ui,...,unj,yi,-,ymj) is
said to be dependent on subroutine si(ui,...,uni,yi ymj) if one of the following conditions
hold:

i) U i n U j = 0
Ü)U j n Y\ = 0
iii) Y i n Y j= 0 i,j e { l,...p} where p is the total number of subroutines, ni,

nj,mi,mjs NandC/ i,Fi, U j, Y] are the sets ofinput and output variables of subroutines iandj
respectively.

3. A MATHEMATICAL MODEL OF SUBROUTINE DEPENDENCES

As defined before a subroutine can be viewed as a set of tasks which receives input variables
and under some commands transforms these variables into output variables. This mapping can
further be written as an explicit relation if an event-graph is used to describe the sequence of
transformations which occur during the subroutine execution. These transformations will be called
activities and their set will be denoted by A.. It has to be noted that a subroutine can also be viewed
as an activity. The input and output variables are viewed as resources (R the set of all resources
used in the program) for the subroutine execution. A program is then an acyclic oriented graph G
which is assumed to be connected. The set of the arcs of the graph G is denoted by T. There is
always a starting activity (node) as (r) and a final one af (r).

Each arc (i,j) e T of the graph G is weighted by an integer Qj > 1 called the displacement.
Each activity a{ will be executed following a certain path in the graph and consequently in an order

il(o

given by the precedence number xi. If (j,i) G then xi=xj+ tjj. A resource precedence number ur will
denote the moment the resource is used for the first time in the program. If i is the first activity for
resource r, then xi> ur-

Consider now P - (i)the set of predecessors of activity i and R ° (i) be the set of resources such
that as(r) = i; then

aie A xi= max (max (xj + tij), max ur) (1)
j€ P-(i) re R°(i)

Let A be the nxn weighted incidence matrix of (A, T) defined by: A ij = tij if (i,j) T and
Aij=-~ otherwise, where n= Card(A). Similarly, let B be an rxn matrix, where r=Card (R)
defined by bri= 0 if as (r) =i and bri= -°° otherwise.

Using the above introduced matrices and the minmax algebra the following results can be
obtained:

• The equation (1) can be written as

X= XA® UB (2)
where X = (xi,x2,..., xn), U= (ui,u2,... ,un)
Letting yr denoting the precedence number of the activity where the resource is used for the

last time, and cir= ti if af(r)=i for some r and ch- =-<*> otherwise, a second relation is obtained:

Y= XC (3)

• Theorem 1 : For a given U the equation X = XA ® UB has a unique solution : X= UBA*
where A*= (E ® A ® A2 ® A n_1), E is the identity matrix defined as eu=0 and eij= -°° for i=j,
andA^A0"1.

• Theorem 2:A* contains as entries the maximal weights of paths between two nodes and
provides in this way the precedence numbers reflecting the activity dependences.

• Theorem 3 :If the critical graph of A* has only one path then there is a total dependence
among the activities (subroutines) and their execution can only be sequential.

• Theorem 4 : if the critical graph of A* has K connected components, then there are K
subroutines which can be executed in parallel.

• The previous results can be extended to the DO loop case. A DO loop can be seen as a
part of a program which repeatedly performs the same activities over the same set of input and
output variables. Using the index variable n X(n) will be the vector of the activities in the n-th run
of the loop, and correspondingly U(n) will be the resource vector in the same run.This leads to the
following model: U(n)=Y(n-l)K where K is an rxr matrix such that Krs =0 for r=s and Krr= the
displacement between af(r) and ai(r). Using these observations and the previous results one can write

Y(n)=Y(n-l) KBA*C (4)
which is a forward dynamic programming equation.

4. A LOGIC PROGRAMMING IMPLEMENTATION

The recurrence of the previous model suggests a logic programming implementation.
Using the model given by (1) & (3) , the results of theorem 1- 4 , and introducing the

following recursive functions:
• find_calls(x„first (1))= find_caUs(x„find_inner_sub(x, find_calls(x,first(new_l))))

• find_inner_sub(x,l)= find_inner_sub(x, find_calls(x,rest (1))

l<7

where first (1) and rest (1) are the head and the tau of the list 1, and newj is a working list
containing at a certain moment the names of subroutines under processing

• norelation(): list(ai(xi,ui), ai(yi» list(si)
• indxi (u ai, callki) H,wnere Uis a strinS of procedure names stored as a list

xi being defined by indxiO={ Ul, li2 } and lil being the Ust of dependent subroutines,and
li2 being the list of independent ones.

With the above introduced recursive functions the main result can be stated as follows:
Proposition: For every list 1 of activities ai i e N, if the activities ai are subroutines and if 1 is

a nonempty list, the following recursive function „„„„
indxi (x , first(l))= xi (x, rest(xi (norelation (yi,ly),first(rest(l))))))

will build the list of all independent subroutines of the analyzed Fortran program.

An expert system shell has been used for the implementation of the above abstract mechanism for
the detection of the subroutine dependences. An expert system has been obtained. The tasks
accomplished by the expert system are : 1) the generation of an abstract Fortran file 2)
the generation of input /output variable,and command lists, 3) the generation of all Fortran
statements (ai), 4) The generation of the corresponding xi,ui,yi,lists, 5) the dependency check 6) the
generation of the lists of dependent and independent subroutines , 7) recursively repeats (6), 8) the
displaying of the final lists.„ . .

The above implementation has been checked an examples of various degrees of diiriculty. in a
demonstration package a Fortran program with three levels of calls is considered for a dependency
check. The expert system was implemented on a Vax and Compaq 386 environment.

5. CONCLUSIONS

The approach developed in this paper for detecting the subroutine dependences is based on a
discrete event system model. The implementation has been accomplished by using a logic
programming technique. To facilitate the implementation an expert system shell has been used. It
provided the appropriate mechanism for reasoning, recreation, communication, and dynamic tracking
of activities. It is a powerful and productive tool for developing software tasks previously
implemented in compilers.

References:
1 .R. Allen, K. Kennedy: Automatic Translation of FORTRAN Programs to Vector Form, ACM

Transactions on Programming Languages and Systems, Vol. 9, NO. 4, Oct. 1987, pp 491-542.
2. CD. Polychronopoulos, U.V. Banerjee:"Processor Allocation for Horizontal and Vertical

Parallelism and Related Speedup Bounds", IEEE Transactions on Computers Vol. C-36, NO. 4,
April 1987 pp 410-426. . , „ L J ,. cu

3.C.D.Polychronopoulos,DJ.Kuck:"Guided Self-Scheduling: A Practical Scheduling Scheme
for Parallel Supercomputers", IEEE Transactions on Computers,Vol.c36,No. 12, pp 1425-1439, Dec.
1987

4. Kuck, D.J. The Structure of Computers and Computations, Vol 1, Wiley, New York, 1987.
5.AUew, J.R.: Dependence Analysis for Subscripted Variables and its application to Program

Transformations, Ph.D. Dissertation, Dept of Mathematics & Computer Sciences, Rice University,
Houston , Tx, April 1983.

6. P.Caspi, N. Halbwacks: "Functional Model for Describing and Reasoning about Time
Behaviors of Computing Systems", Acta Informatica ,Vol 22, pp 595-627,1986.

7.R.A. Cuninghame Green:" Minimax Algebra" Lectures Notes in Economics and Mathematical
Systems, vol. 166, New York, Springer-Verlag,1979.

8.P.W.Foulk, S.M. Nassar : " Analysis of Parallelism in Nested Do Loops , The Journal of
Systems and Software, no.5,1985,pp73-80.

118

The CCS Interface Equation — an Example of Specification
Construction using Rigorous Techniques

G Martin, R Everett
British Telecom Research Laboratories

April 3,1989

Abstract
The use of algebraic technique* in the development of software enable« systems to be built which have

a precise formal foundation. Such formal methods[1] can help considerably in reducing the susceptibility
to errors of interpretation and consistency of many of the current ad hoc procedures used in system
design. This is of particular importance for building large and reliable systems. Furthermore, the use
of formal techniques enables rigorous calculations of various properties to be made on a system like, for
example, absence of deadlock.

In this paper we are concerned with how systems expressed in such a manner can be used to system-
atically generate specifications which may, in principle, be performed without any human intervention^].
In particular, we deal with the type of situation where the specification of an unknown system component
is derived from two given specifications. The pre-requisites for solution to the problem we consider are
that the known specifications are formally expressed in terms of states and that the component to be
synthesised interacts with them in some predefined way.

1 Notation
We are dealing with finite communicating transition systems as described in [3,4] in which a, ß, y, p ... a,
ß,yp... denote action«, r is a special action called the invisible action and Pi, Pi, q, r • ■ ■ are states, e
denotes an empty sequence of actions. A direct p derivation between states is a relation between two states
and and an action, written pi —»* p», in which pi is the source and pj the destination. Ä(p) is the set of
all states reachable from pr, A(p) (called the alphabet of p) is the set of all actions which are possible for all
p* € £(p). Afp is a machine which can exist in state p. For conciseness we write pi -** pj —♦** ps to mean
(p! -+'' pj) A (pj -** ps). A set of relations sharing the same source is written as a behaviour equation:
Px -4= api+ßpi means that (pi -»" pj)A(pi —* p») and that there are no other relations having pi as a source.
We express the ability of two transition systems to communicate by use of complementary actions such as p
and AT and the parallel composition operator: |. If p = "ppf and r = pr1 then (p|r) = 7*(p'|r)+ji(p|r') + T(p'|r/)
([3, Expansion Theorem]). That is, if p can do an action and r can do the complementary action, then the
composition of the two can do either of these (in which case only one of the machines changes state) or it can
perform the invisible r action (in which case both machines change state). Given one machine we con derive
another by 'hiding': that is, removing all transitions in which the action belongs to a set A; the r action
may not appear in such a set. In the previous example if we define a set A = {p} then (p|r)\A = r(p'|r').
By convention hiding an action implies hiding its complementary action. We define p =>** p* to be a relation
between two states p and pf and action p (^ r) if and only if

-»»-'»...-' ft-^m r*rP*^r-"-»V
0 or more TS exactly one p 0 or more rs

Replacing p by r in the above figure gives a representation of the definition of the relation p ^* pf (where e
is the null string), which indicates that two states are connected by a sequence of zero or more r actions. For
conciseness we use p —** (read as 'p can do a p') to mean 3p* such that p —♦* p* (but we are not interested
in what p* is). Observational equivalence is defined in such a way that two states p and q are observationally
equivalent, written p » g, if and only if for every i) p if p =>'* p* then there exists a qf such that q =>M qf and
p1« q1 and ii) if q =>M q1 then there exists a pf such that p=>ß pt and p1as q1. Weak determinacy is defined
in such a way that if p =>M p' and p =>M p" then p' w p".

il\

2 Interface Equation
An interface ejuaiionis an expression of the form {p\X)\A « q where A(p) n A(«) C {r}, A(p) HA = 0 and
A(q) n (A U Ä) = 0. (0 denotes the empty set.) We say that r is a solntion to the equation (p\X)\A » q iff
r satisfies (p|r)\A * g and A(r) n A(p) C {r}. In this paper we further assume that no pair of states q> and
q" € R(q) are observationally equivalent. This slightly simplifies the exposition and significantly reduces
problems in implementing the algorithm. Since it is straightforward to compute from a machine Af not
having this property a new machine M' which has this property, the assumption does not impose significant
constraints on the applicability of the theory which we develop.

The interface equation may be thought of as being approximately the reverse of the expansion theorem:
whereas the expansion theorem composes two given machines to produce an unknown third we are attempting
to compute the unknown machine which, when composed with a second, is observationally equivalent to a
given third.

3 Methods of Solution
A basic procedure for solving the interface equation is a discarding algorithm very similar to that described
in [51. In this procedure we construct a set ^, each component K of which is an I-compleie (defined later)
set of tuples of the form (pf, A where p7 and q> are states of the machines Mv and Mr We then compute,
for every pair (K,K>) the relations (defined later) K -*»° K\ K ^c K' and K -' K'. We then scan
through the c- nponents of i/> and discard any component K that is not O-complete (defined later) with
respect to i>. We iterate this scan until either no set remains that fails the O-completeness check (in which
case we have found a solution) or none of the sets of i> contains the tuple (p, q) (in which case no solution
exists). The solution is expressed by creating one state r< of the solution for each K in i>. Derivations
between r-states are readily associated with derivations between .ff-sets thus: if there is a -*r between two
K sets there is a -»r between the corresponding r states; if there is a — "-0 or ->*c between two K sets
there is a — * between the corresponding r states. The procedure of forming I-complete sets entails (in the
most basic form of the algorithm) the formation of all possible valid unions of basic sets of tuples called BIr

sets. Each of these BIr sets is I-complete, and the formation of valid unions consists of forming only those
unions which retain this /-completeness condition.

4 Key steps in the theory-
Relations between tuples: Let us first introduce relations -+»1 and — r'p between tuples, where
/i € A(p) U A(2) - {r}: define (p*. q1) -+»1 (p",q") iff p* -" p" and «* =>" q" and define(pf, q>) ^Wjf)
iff p> -*? p» and q1 =►* q". We then introduce set« of tuples I„,z and IT>P'. define Ifhi(p',q',p') =
WWW,*) -*'J #'.«")} *** J'r,i»(p',«',p") = WWW,*) -+T'P (P",«")}. We also need two
further relation» between tuples -»* and -*c: define (pW) -*° (p",«") iff p1 = p" and q> =►" q" and
» 6 A(«) - A(p) and p ± n define (p1, «*) -*c (p",«") iff P* -+* p" and q1 =>* q" (where «is the null string)
and /* € A and p^r..

BIT sets: A key step in developing efficient algorithms is the introduction of Bir sets, which are defined in
terms of the preceding sets, as follows. Define B&V. «0 (*' 6 {1,2.. •}) by the following: {pf, «*) € ££ (p\ 4)',
if(p".«") € B&V-«') and (/*/(?",«", p"') * 0) or (Jr,p(p", q",p"') * 0) then (p",q") is any one of the
tuples in I^i n IT,p (if both are non-empty) or any tuple in the non-empty set if only one of them is empty.
If q is not weakly'determinate then for a given (pf, «*) there may be several BiT sets depending on which of
the tuples is selected; the superscript (*) is used to distinguish between these sets.

/-completeness: /-completeness is a property of a set K of tuples, K being a union of Btr sets. Such a
set is /-complete iff V(j/, q1) € K, if pf — (/* i A and p £ T) then q> =>*.

5 Relations between sets
We define five relations between sets: ^*°, ^*c, ->r, =**° and =>*c. Define K -+*° K" iffV(p,,«0 €
K3(p",q") 6 K' s.t. (p',«') ^*-° (p",q"). Define K -*° K' iff ((3(p', «*) € K) and (3(p",«") € K")
s.t. (pV) -*C (p",q")) and (V(p\g') € ÜT if p* -*" p" with JI € A then 3(p",q") 6 Ä" *.*• (pV) —*
(p". «"))• Define K =>"'° ÜT" iff there exists a sequence of K such that

K-^rKx^
TK-1---^

TKi ^f, ^4 ,^r *»••-< ''
sero or more TS exactly one /t, O zero or more TS

(2.0

Similar definitions axe made fot p, C and r derivations.

O-completeness A set K is said to be O-complete with xespect to a set S if for all (p*, g7) € K if p € A(g)
and g* -»" g" then there exists a sequence of sets JT< and tuples (ft,g<) (where each (p,-, g<) € #<) such that

7^ft =*"' P2 =>*• •••p4=>JrP5 =►"• •••=►"*?'

and (p1, g") € ÜT' where, if p = r then JT = € and Y = e, otherwise eiifcer X = p and Y = e or X = e and
Y = p,0 Notice that /-completeness of a set is not influenced by other sets; in contrast, O-completeness,
while still being a property of a set, is influenced by that set's relations with other sets.

6 Key steps in algorithm development
The practical problem of this basic approach its combinatorial complexity, which causes the number of sets
in i> to be very large. This complexity arises (i) the formation of all possible valid unions of BjT sets, and
(«) the relaxation of weak determinacy, which considerably increases the number of Bir sets[6].

We have attempted to reduce the computational requirements in two ways. First we have refined the
basic procedure described above by introducing the concept of minimal unions [7]. This concept considerably
reduces the number of sets that we have to deal with in performing the O-completeness tests. Secondly, we
have attempted a constructive approach[8] instead of a discarding approach.

The minimal-union approach to improving the basic discarding algorithm is to try to avoid forming unions
which are not essential to a solution. We can do this by first considering image» of derivations between sets.
For example, the image of a T derivation from K to K' is the set V C K' given by {(p",g")l(p">«") €
K' A (3(p", g*) € K s.t. qf =*•* where «is the null string)}. Similar definitions are made for p, X and p, O
derivations. A minimal union from K containing K' is defined to be the union of only those B/T(p', g*) sets
with (p*. g1) 6 K' such that Bir{jf, a?) C K. We have found that it is sufficient to consider only minimal
unions of images oi p,C, p,0 and r derivations in computing solutions, allowing a considerable reduction
in computing requirements in some examples.

In the constructive approach we delay the steps which generate the large number of sets as long as
possible. Instead of performing the single linear sequence of forming 5/r sets, I complete sets, unions,
and then carrying out the O-completeness tests, we carry out an iterative procedure. In this iterative
procedure we do not immediately set up /-complete sets but set up what we call /-complete sets (which at
any stage we can expand to produce /-complete sets). We then test these sets for a more complicated for
of O-completeness which we term O-completeness. If this test fails on some set K, we then derive from the
offending set more /-complete sets by a heuristic process outlined in the next section. In this way we hope
to avoid the exponential explosion of states when attempting to solve real problems.

7 Constructive algorithm concepts
In the constructive algorithm as well as eliminating unnecessary generation of BiT sets, or at least postponing
*uch generation to a late stage, we pre-process the g machine into a minimum action representation. This
produces a new machine observationally equivalent to the original g but with new and useful properties.
The minimum action representation of a machine M is derived from the original machine by removing all
derivations g -»'* g* which are not observationally essential A derivation of the form g —»^ qf (where
p 6 A(g) - {r})is observationally essential iff Vg" s.t. g" 56 g then g ^' g" =>" g' is false and Vg" s.t.
gf 56 g" then g =»** g" =»* is false. A similar definition is made for derivations of the form g -*T g\
Analagons definitions about the minimum paths between tuples can be made. By analysing the reachability
of the p machine by actions not in A and by comparing minimum paths of the p machine with minimum
paths between (p,g) tuples, we compute a relation Us between tuples. (The lengthy definitions of Ks,
/-completeness and O-completeness have been omitted here.) We then construct the transitive closure of
Us and examine the set of equivalence classes given by this relation. By construction each of these sets
satisfies our definition of/-completeness. We then check each of these sets for Ö-completeness. In contrast
to the discarding algorithm, we do not discard a set which fails. Instead, we replace the offending set K by
two sets, one derived from K by deletion of some tuple (p*, g*) and the other derived from K by retention
of (p*, g*) and deletion of all other tuples beginning with p*. This process is known as tuple extraction. In
general the resulting sets are not /-complete, and so we have to refine the sets (by tuple deletion) until
they are /-complete. Deletion of tuples also implies that the Hs relations have to be recomputed. We

izt

iterate round the cycle of I-completness checking, O-completeness checking and tuple extraction, until the
(^•completeness condition is satisfied.

The process of tuple extraction is a heuristic one. That is, we have worked out rules for guessing which
choice of tuple is most likely to lead quickly to a solution. The algorithm we use would eventually search
through all tuples, though this would take far too long in general. Consequently appropriate selection of
tuples is of crucial importance in this step.

8 Computation times
Using a discarding algorithm, an M, with two states and a Mq with three states can be solved in a few
seconds on a VAX785. An example Mr with 5 states and an Mq with 20 states but requiring no unions was
on the limits of solubility (1 CPU-day). We have not yet explored the computation time of the constructive
algorithm, but we expect the 5/20 example to be soluble in a few minutes of CPU time.

9 Conclusions and current work
We have produced algorithms which solve the interface equation for q machines which are not weakly
determinate. Basic versions of these algorithms require impracticably large computation time for machines
with more than a very small number of states. More advanced versions are under development which are
more likely to produce solutions in a reasonable amount of time. Current work involves the optimisation of
the heuristics f.r tuple selection in the constructive algorithm.

Acknowledgements: The authors would like to thank the director of British Telecom Research Laborato-
ries for permission to publish this paper. Thanks are also due to C Osborn and B Lloyd (both of the System
and Software Engineering Division) for translating abstract mathematics into working Pascal programs.

References
[1] B Cohen. Justification of formal methods for system specification. Software and Microsystems, 1(5),

1982.
[2] M T Norris, R P Everett, GAR Martin, and M W Shields. Method for the synthesis of interactive

system specifications. J. Info, and Software Tech., 30(7), September 1988.
[3] R Milner. A Calculus of Communicating Systems. Volume 92 of Lecture Notes in Computer Science,

Springer-Verlag, 1980. ISBN 3-540-10235-3.
[4] M W Shields. An Introduction to Automata Theory. Blackwell Scientific Publications, 1987. ISBN

0-632-01554-3.
[5] M W Shields. Solving the Interface Equation, Tech. Rep. SE/079/2. Technical Report, Electronic

Engineering Laboratories, University of Kent at Canterbury, July 1986.

[6] G Martin. A General Solution to the Interface Equation. Technical Report, British Telecom Research
and Technology Internal Memorandum Number Rll/87/023, 1987.

[7] G Martin. Practical Considerations of Applying the Interface Equation. Technical Report, British Tele-
com Research and Technology Internal Memorandum Number Rll/87/007,1987.

[8] G Martin. A Study into a Constructive Method for Generating Solutions to the Interface Equation. Tech-
nical Report, British Telecom Research and Technology Internal Memorandum Number RT31/89/004,
1989.

2-2-

Implementing Mathematics as an Approach for
Formal Reasoning

Robert L. Constable
Department of Computer Science

306 Upson Hall
Cornell University
Ithaca, NY 14850

Two simple but important algorithms used to support automated reasoning are tautology
checking and matching. Given two terms matching produces a substitution, if one exists,
that maps the first term to the second. In this lecture these two algorithms are used to
illustrate the approach to automating reasoning suggested in the title. Both algorithms
can be derived and verified in the Nuprl proof development system following exactly the
informal presentation we use here.

These examples serve to introduce a particular automated reasoning system, Nuprl,
as well as the idea of deriving programs from constructive proofs. The treatment of the
examples also suggests how these systems can be soundly extended by the addition of
constructive metatheorems about themselves to their libraries of results.

M*

Pairings on Lambda Algebras

W. S. Hatcher, Universite Laval, Canada and
Marcel Tonga, Universite d'yaounde, Cameroun

This paper continues the authors' universal algebraic approach to
the study of the X-calculus begun in [Hatcher & Tonga 1985] and
further developed in [Hatcher & Scott, 1986] and [Tonga 1987]. The
basic insight underlying this approach is that the traditional X-calculus
is algebraically defective because it uses only one-half of the natural

B
isomorphism ABxC s (AC) , namely the right-hand side. The principal

means of removing this defect is by an appropriate theory of pairings

on so-called X-algebras.
Let A - (A,1) be a groupoid (* is a binary operation, called

application, on the non-empty set A). We assume |A| > 1 throughout. A

is a \-sgstem if it supports a syntactically appropriate X-operator

satisfying the conversion identities (Xxt)'x ■ t, where t is any A-term,

i.e., a term of the first-order diagram language L(A) of groupoids over

A (thus an element of the underlying set WA(X) of the absolutely free

(word-) algebra w of groupoids with distinguished constants A and

variables X) and 3 is the minimal congruence relation on WA(X),

obtained by taking all possible evaluations of X in A). Thus, a X-system

A has constants K, S s A such that K'a'b = a and S'a'b'c = (a'c)'(b'c)

hold, where a, b, and c are any elements of A (parenthesis-free

iterations of application are associated to the left). A X-system

satisfying all universal A-X-identities (see [Hatcher & Scott 1986]) is a

X-algebra. and a Xn-algebra if it satisfies the further identity (TI):

Xx(t'x) s t, where t is any A-term.
A pairing is defined on a nonempty set A whenever A supports a

binary coupling operation [a,b] and unary projection operations p(x) and

q(x) satisfying the identities p([a,b]) =• a and q([a,b]) = b. If the set A is

the support of a X-system A, then a pairing with binary coupling [a.b]

iz.5

is defined on A precisely when there exist nullary operations TT1 and IT2

on A satisfying the identities ^'[a^] = a^ given IT, and TT2, p(x) = n/x

and q(x) » i^'x, while, conversely, n, = Xxp(x) and TT2 = Xxq(x) when p(x)

and q(x) are given.
A pairing is usually defined on X-systems by: [a,b]x = Xx(x'a'b); ■n1

- Xx(x'K); TT2
X = XxCx'K'CS'K'K)) (see e.g. [Barendregt 1984]). However, this

pairing has undesirable special properties. For example, it satisfies the

condition of suriectivitu. [TT1
x'a,TT2

x,a]x = a, only when |A| = 1 (see
[Tonga 1987, p. 18]). We call this pairing canonical to distinguish it

from others.
This difficulty concerning the canonical pairing is overcome by

extending the language L(A) of groupoids to a language L^tA) that

includes new constants TT1 and IT2 and a second binary operation [-, ■].
The structure A - (A, '. [-, ■]. TTV TT2) is a coupled grouPQld when it

satisfies the identities n/ta.b] = a and TT2'[a,b] = b for all a, b € A. A
coupled groupoid is a x-n-system if it supports a syntactically

appropriate X-operator satisfying conversion identities for all terms t

of L1T(A). We have:

Theorem 1. A coupled groupoid A is a X-TT-system if and only if A
has constants S, K, and W satisfying the identities K'a'b - a; S'a'b'c =
(a'c)'(b'c); W'a'b*c = [a'c, b'c], where a, b, and c are any elements of A. ■

This combinatory form of X-iT-systems is very helpful in studying
the relationship between various pairings defined on them. Indeed, we
can use the X-operator in a X-TT-system to define pairings other than
the one given by the primitive coupling operation [-, i] and the primitive
constants TT1 and IT2. An important and useful example is the following:

A x-n-system satisfying all universal A-X-TT-identities (see [Tonga
1987, p. 23]) is a x-ir-algebra. and a X-TT-algebra satisfying the identity
(H) is a x-Ti-TT-algebra. Let ^ be a X-Ti-n-algebra. Then, <a,b) =
Xx[a'x,b'x], p(x) = XydT^x'y)), and q(x) = Xy(TT2'(x'y)) define a pairing on
A, called a fnnrtinn pairing. It is a pairing frequently used when
dealing with the "monoid form" of a X-7i-iT-system, in which the
X-operator is used to define the following further operations. (1)
Composition: a»b = Xx(a'(b,x)). (2) Identity: I = Xx(x). (3) Exponentiation

!2.<L>

(Currying up): g* - Xx(Xy(g'[x,y])). (4) Extraction (Currying down): fg =
Xx(g'(TT1

,x)'(TT2
,x)). (5) Evaluation: s = fl. If the original pairing is the

canonical one, then the derived function pairing is called standard- The
standard function pairing can be given an intrinsic definition in terms
of the monoid structure of the system (see [Tonga 1987, p. 60]).

Suppose, now, that we are given a monoid (M, <», I) enriched with a
further binary operation <-, •>, a unary operation *, and nullary
operations TTV IT2, and s. Then n - (M, •, I, <-. ■}, , *, IT1,TT2J s) is a xsak
c-monoid if these data satisfy the following identities: ir^a,, a2> * at;

<a, b>»c - <aoc, b<»c>; so<a*oTTv u2> = ao<TTv IT2>; a*«b = (ao<b°irr TT2»*.

Theorem 2. Any weak C-monoid is, under the appropriate definitions,
a X-u-algebra. Conversely, any X-n-iT-algebra is, under the definitions

given above, a weak C-monoid. ■
Only the (=>) half of Theorem 2 is really new (although the

converse was in fact established only for the standard pairing, see
[Adachi 1983] and [Koymans 1984]). The proof uses a variant, due to
Tonga, of the discriminant of [Hatcher & Scott 1986].

A weak C-monoid n is a x-monoid if the identity e - s°<TT1f TT2>

holds in n , an ^-monoid if the identity s* * I holds, and a surjective
monoid if <TTr IT2> - I. Finally, a surjective n-monoid is a C-monPid-

Theorem 3. Any X-n-monoid is a X-Ti-n-algebra and, conversely, any
X-Ti-iT-algebra is a X-Ti-monoid. ■

This result is contained in [Tonga 1987]. It strictly generalizes the
main result of [Hatcher & Scott 1986], employing similar techniques
and using the result of Theorem 2 above as a lemma.

In fact, Theorem 3 is a (particularly useful) special case of the

following theorem:
Theorem 4. There is an equivalence of categories between the

category of all X-ir-algebras and the category of all X-monoids. ■
The special case of Theorem 4 obtained by taking only the

canonical pairing for the X-algebras and the standard pairing for
X-monoids is the well-known result of [Adachi 1983] and [Koymans

1984].

12.1

Finally, we give necessary and sufficient conditions for any two
pairings to be pairings for the same, given X-monoid structure. This
generalizes a similar result for C-monoids found in [Lambek & Scott

19861
The results of the present paper show that most of the various

structures which serve as models for the X-calculus have, when endowed
with a pairing system, elegant algebraic formulations as monoids. In
particular, we have obtained these results without ever imposing the
condition of surjectivity on our pairings, üet, all of the results extend

easily to the surjective case.
Important for computer science and the theory of recursive

functions in general is the fact that none of the various structures
dealt with in this study are required to be extensional (or even weakly

extensional).

References

T. Adachi [1983]: A categorical characterization of lambda calculus
models, Pesparch Rpnnrt nn information Sciences. Tokyo Institute

of Technology, No. C-49.
H. P. Barendregt [1984]: The Lambda Calculus. Revised Edition,

North-Holland, Amsterdam.
W. S. Hatcher & P. J. Scott [1986]: Lambda-algebras and C-monoids, ZeiL

Math Log. Grund. Math.. Vol. 32, pp. 415-430.
W. S. Hatcher & M. Tonga [1985]: Equational extensions of classical

combinatory logic, Abstracts. Amer. Math. Soc, Vol. 6, pp. 226-227.
J. Lambek & P. J. Scott [1986]: introduction to Hioher-Order Categorical

Logic. Cambridge University Press, Cambridge, England.
C. P. J. Koymans [1984], Mnriais of The Lambda Calculus. Thesis,

Rijksuniversiteit, Utrecht, Holland.
M. Tonga [1987]: rnuolaoe sur les lambda-alqebres. Thesis, Universite

Laval, Quebec, Canada.

/2.Ö

Constructor Model as Abstract Data Types
(summary)

Hantao Zhang
Department of Computer Science

The University of Iowa
Iowa City, IA 52242

hzhang@herky.cs.uiowa.edu

Data abstraction has been widely recognized as an important technique for designing pro-
grams and the notion of Abstract Data Types (ADT for short) was invented for formally study-
ing these abstraction techniques. In particular, equational specifications of ADT, which posit a
set of many-sorted algebraic objects to a finite set of equations, enjoy considerable popularity
because programmers can easily formalize equations within programming languages while pure
mathematicians can easily study the algebraic objects specified by equations. However, many
people feel that this approach creates more problems than it solves [ManesArbib 86,Ch.l4].
Such kind of frustration comes, we believe, partially from definitions of ADT or equivalently,
interpretations of equational specifications.

According to the ADJ group [Goguen et al 75], an ADT is an isomorphic class of universal
algebras. They proposed that the class of initial models (unique under isomorphism), which are
the minimal algebraic structure satisfying the given equations, are used as the interpretation
or semantics of specifications [Goguen et al 75]. In this initial-model approach, all functions
in a specification are considered uniformly.

Another interesting isomorphic class of universal algebras is the ones isomorphic to the
set of algebraic objects built up uniquely by constructors. In this approach, all functions in
a specification are explicitly classified into constructors and nonconstructors (or destructors),
with the interpretation that the constructors and equations on constructors define the model
(called constructor modet) of a specification. This approach to equational specifications is
not new: Peano's arithmetics, Boyer and Moore's shell-principle, etc., can be considered as
instances of this approach.

A serious problem in the initial-model approach is to handle erroneous and meaningless
expressions as well as incompletely defined nonconstructors. When some incomplete functions
are presented, it is often difficult to reconcile the initial object condition with intuitively correct
equations of the intended model. For example, suppose that a specification defines '+' over
natural numbers with the equations E= {0 + x = x, suc(x) + y = suc(x + y) }. In this case,
the initial model of E is (isomorphic to) the natural number set and the equation x + y = y + x
is true in the initial model. If E is extended by adding a single equation pre(suc(x)) = x,
then x + y = y + x is no longer true in the new initial model, since the function pre is not
defined on 0. If pre(O) is substituted for x and 0 for y in x + y = y + x, the resulting two
sides are not congruent. This is not very surprising as the initial object set can be changed
with the addition of a new function symbol which may introduce new values. The side effect
of this change is that the new initial model is often very hard to describe and is no longer the

ill

intended model.
To overcome this problem, many attempts have been tried. The sufficient completeness

property of ADT specifications introduced by Guttag [Guttag 75] has been found useful. A
specification is sufficiently complete if every nonconstructor is completely defined over construc-
tors. However, requiring every specification being sufficiently complete is often inconvenient
and is too restrictive in a system for building specifications.

It is always possible that the intended model can be built up by a minimal set of operators
(called constructors). As long as the constructor set and their relations are fixed in a speci-
fication, we may consider that the model of the specification remains unchanged, no matter
what functions have been added and whether these new functions are completely defined. This
intended model is what we call "constructor model".

For a given specification, the constructor model has a close relation with the initial model.
In terms of universal algebras, the constructor model is just a subalgebra of the initial model
with constructor terms as its domains.

Definition 1 (subalgebra) Given a signature (S,F) and an F-algebra A - (SA,FA), where
SA is the domain of A and FA, the functions of A. An F-algebra B = (5B, FB) is said to be
a subalgebra of A if (i) FB = FA and (ii) for each Aa € SA and Bs e SB, we have B, C Aa,
where s€S, A, and B, are the object set of sort s in A and B, respectively.

In contrast to the classical definition [BirkhoffLipson 70], we do not require that the domains
of a subalgebra be closed under its operations. This is because all the functions are total in
an initial algebra. If we had required that subalgebras be closed under functional application,
then an initial algebra could not have any non-trivial subalgebras, except for the case where
some domains of such subalgebras are void.

Let I(F, E) denote the initial algebra specified by a signature (5, F) and a set E of equa-
tions. We are interested in subalgebras of I(F, E) such that the domains of such a subalgebra
are not void for each sort s € S and are determined by specifying a subset of F. More precisely,
for a subset F' C F, we require the domains of its subalgebra to be isomorphic to the free
term algebra T(F') modulo the congruence =£. We say that they are subalgebras of I{F,E)
with respect to F' and write I(F/F', E) to denote them.

Theorem 2 Given S, F, E and F' C F. The following statements are equivalent:
(a) I(F, E) is isomorphic to I{F/F', E);
(b) The functions of I(F/F',E) are total;
(c) The E-congruence classes (modulo =E) of the term algebras T(F) and T(F') are

isomorphic.

Given a signature (S, F), a subset C of F and a set E of equations over F and variables, let
us denote an equational specification by SP = (5, F, C, E), where C is called the constructors
of SP and F — C, the nonconstructors of SP.

Definition 3 (constructor model) Given a specification SP = (S, F,C, E), the constructor
model of SP is the subalgebra I(F/C, E) of the initial model I(F, E) with respect to C.

Example 4 Let SP = (S,F,C,E) = {{iowa},{0,suc,pre},{0,suc},{pre(suc(x)) = x}). The
domain of sort iowa in the initial algebra of SP is neither the natural number set nor the
integer set, it can be represented by:

/3ö

{sue*(pre-'(0)) | i,j € IN, the natural number set},

which is isomorphic to IN x JZV. An initial algebra of SP is

I(F, E) = (Nx IN, {0/, suci,prei})

where
0/ = (0,0),
suci = A(»,j).(*' + l,i),
pre/ = A (i, j) .if (t = 0) then (*, j + 1) else (i - 1, j).

The subalgebra of the initial model with respect to C — {0, sue} is:

I(F/C,E) = (IN x {0},{0j,sucj,pre/})

where 0j, sucj and prej are the same as in I(F,E) above. By definition, I(F/C,E) is the
constructor model of SP above. Note that the function prej is not total in I(F/C,E), since
pre/((0,0)) = (0,1), which does not belong to the domain of I(F/C,E).

By definition, the subalgebra of the initial model with respect to constructors is the con-
structor model of an equational specification. It is easy to derive from Theorem 2 that if a
specification is sufficiently complete, then the initial model and the constructor model of a
specification are isomorphic. In general, the constructor model and the initial model are differ-
ent. The advantage of the former over the later is that it is easy to reconcile the initial object
condition among constructor terms with the intended model and to reconcile the soundness
of equations in the constructor model with intuitively correct equations. Hence, it is more
natural and intuitive to use constructor model as the ADT of a specification.

Constructor model can be also considered as the initial model of the sub-specification of
a specification obtained by ignoring any nonconstructors. In other words, every constructor
model has an initial model specification. Because of the initiality of constructor models, the
constructor model approach inherits almost any advantage of the initial model approach for
ADT specifications. Like initial models, constructor models can be used to justify the correct-
ness of equational programs. Because every value can be represented by a syntactical term,
a computing step corresponds to a deduction step from a term t\ to another term ti by a
set of inference rules. The correctness of the computing is thus reduced to the validity of the
equation t\ = tt in the constructor model. Similarly, the validity of inference rules can be
also verified in the constructor model. If the equations in a specification possesses a canonical
rewrite system in which if the right side of a rewrite rule has non-constructors, then its left side
has also non-constructors (called constructor preserving [Kapur et al 85]), then the constructor
model is computable because the domain of the constructor model is the same as the collection
of all the normal forms of ground constructor terms.

In [Zhang 88], the constructor model has been used to establish the soundness of inductive
theorem proving techniques and to characterize different classes of theorems of an equational
specification. It is shown that the class of all the equations valid in the constructor model is a
superset of the equations valid in the initial model, but is a subset of the equations which can
be proved if we add one more inference rule called full consistency to the proof system (see
also [KapurMusser 84]). It is also shown that the induction principle based the constructor
model, with the rules of equational reasoning together, constitutes a set of inference rules that

/3i

has the monotonicity property with extension, a desirable property for automated reasoning

systems.
In [ManesArbib 86](pp.327), it is criticized that the initial model approach does not provide

a satisfactory explanation on the relation between two ADT stack and queue. However, it
becomes clear when we compare their constructor sets because they have the same constructors
(after renaming). Both of them can be implemented by the ADT list because list not only has
the same constructor set as that of stack and queue, but also has a richer set of nonconstructors

than stack and queue.

Finally, it is worth mentioning that the order-sorted algebra approach by [Goguen et al 85]
is compatible with the constructor-model approach and their results (including the implemen-
tation results in OBJ3 [GoguenWinkler 88]) can be carried over in a natural form.

Acknowledgement: Thanks to Monagur Muralidharan for his useful comments on an earlier

draft of this note.

References

[BirkhoffLipson 70] Birkhoff, G., Lipson, J., Heterogeneous algebras, Journal of Combinatorial Theory,
8, 1970. 115-113.

[Goguen et al 75] Goguen, J.A., Thatcher, J.W., Wagner, E and Wright, J.B., "Abstract data types
as initial algebras and the correctness of data representations", In Computer Graphics, Pattern
Recognition and Data Structure, IEEE, 1975, 89-93.

[Goguen et al 85] Goguen, J.A., Jouannaud, J.P., and Meseguer, J., "Operational semantics of order-
sorted algebra". In Proc. of Inter. Conference on Automata, Languages and Programming, Brauer,
W., Ed. LICS 194, Springer-Verlag, 1985.

[GoguenWinkler 88] Goguen, J.A., and Winkler, T., Introducing OBJ3, SRI-CSL-88-9, Computer Sci-
ence Laboratory, SRI International, August 1988.

[Guttag 75] Guttag, J., The Specification and Application to Programming of Abstract Data Types.
Department of Computer Science, Univ. of Toronto, Ph.D. Thesis, CSRG-59, 1975.

[KapurMusser 84] Kapur, D., and Musser, D.R., »Proof by Consistency," Proc. of an NSF Workshop on
the Rewrite Rule Laboratory, Sept. 4-6, 1983. Schenectady, G.E. RD Center Report GEN84008,
April 1984. (also in Artificial Intelligence 31, 1987, 125-57).

[Kapur et al 85] Kapur, D., Narendran, P., and Zhang, H., "On sufficient completeness and related
properties of term rewriting systems". GE Corporate Research and Development Report, Sch-
enectady, NY. Also in Ada Informatica, VoL 24, Fasc. 4, August 1987, 395-416.

[ManesArbib 86] Manes, E.G., and Arbib, M.A., Algebraic Approaches to Program Semantics,
Springer-Verlag, 1986.

[Zhang 88] Zhang, H. Reduction, Superposition and Induction: Automated Reasoning in an Equational
Logic, Ph.D. Thesis, Department of Computer Science, Rensselaer Polytechnic Institute, Troy,
NY, August 1988. Also in: Technical Report 88-06, Dept. of Computer Science, Univ. of Iowa.

tsz

LCF Should Be Lifted (Summary)

Bard Bloom* Jon G. Riecke*
MIT Laboratory for Computer Science

Cambridge, MA 02139
email: bardQtheory.lcs.mit.edu, rieckeOtheory.lcs.mit.edu

Abstract: When observing termination of
closed terms at all types in Plotkin's inter-
preter for PCF [11], the standard cpo model
A v is not adequate. We define a new model,
A Y> with lifted functional types and prove
its adequacy for this notion of observation.
We prove that with the addition of a parallel
conditional and a convergence testing opera-
tor to the language, the model becomes fully
abstract; with the addition of an existential-
like operator, the language becomes univer-
sal. Using the model as a guide, we develop a
sound logic for the language.

1 Introduction

The denotational semantics most appropriate for a
programming language depends crucially upon the
observations one makes about computations. In
general, an observation is some important behav-
ior of the interpreter [8]. For example, in the arith-
metic, higher-order programming language PCF
[11, 13], one usually chooses to observe the results
of arithmetic expressions—that a term of integer
type reduces to a numeral. One may also extend
the notion of observation to arbitrary terms, saying
that two terms are observationally congruent if
they produce the same observable outcomes in any
program context.

A good denotational semantics should be able
to predict the observational behavior of a term.
Each observation must therefore have a denota-
tional meaning. When observing numerals in PCF,
for example, M evaluates to 78 should imply that
M means 78. If the converse holds as well, we say
that the semantics is adequate. A perfect match
occurs when observational congruence and semantic

'Both authors were supported in part by NSF Grant No.
8511190-DCR, ONR grant No. N00014-83-K-0125, and NSF
Graduate Fellowships.

equality coincide; the semantics is then called fully
abstract.

The language PCF, when observing numerals,
has a well-matched denotational semantics. Plotkin
and Sazonov show that the Scott-style, cpo model
A v is adequate [11,12]. Moreover, although A v is
not fully abstract, the addition of a parallel condi-
tional operator pcond to PCF makes the model fully
abstract under this notion of observation [11, 12].

There may be other plausible choices for obser-
vations, e.g., in a language with stores, one could
observe the contents of memory cells. Other notions
of observation can open a morass of problems. In
PCF, for example, one might wish to observe terms
at higher type, e.g., printing a message when a term
"equals" the identity function Xx.x. One must then
choose the sense in which to compare terms of func-
tional type: syntactic equality is probably too fine-
grained, whereas observational congruence of terms
is undecidable [17]. In particular, we cannot hope
to observe the identity function in the same way we
do numerals.

Nevertheless, one may reasonably observe termi-
nation of terms of functional type. When given a
term of higher type, Plotkin's interpreter for PCF
will either terminate at a A-abstraction or diverge.
For example, let ß" be a term of type <7 that di-
verges, and consider the two PCF terms \xT£lT and
fiT->T. The PCF interpreter will halt on the first
term and diverge on the second. In fact, most inter-
preters for functional languages are "lazy," stopping
at A-abstractions and printing some message indi-
cating that the computation will proceed no further
(e.g., LISP [15].)

If we observe termination at higher type, A v
fails to be adequate since the meanings of the two
terms above are both _L. To regain adequacy, one
could change the interpreter to reduce inside A-
abstractions; Wadsworth [16] and Cosmadakis and

/33

Meyer [4, 8] give examples of such interpreters. We
take the opposite approach and try to build a model
that reflects the behavior of the interpreter. We are
willing to add new constants to PCF, as long as
we do so conservatively; the interpreter's behavior
should not change on terms without the new con-
stants, and should still stop on abstractions.

We choose "termination of closed terms at any
type" and "evaluation to ground constants" as the
fundamental observations. We introduce the model
A Yi built using the common domain-theoretic con-
structor of lifting, which includes an extra element
at every functional type. The extra element is pre-
cisely what we need to give distinct values to XxT.£lT

and Qr~*T. We show that A y is adequate, and
with the addition of pcond (at all types) and a con-
vergence testing operator up?, the model becomes
fully abstract for our notion of observation.1

In A Yi there is a natural way to select a set
of computable values from the domains.2 PCF
terms always have computable meanings, but the
computable values may not all be programmable.
We say that a language is universal for a denota-
tion^ semantics iff all computable semantic values
are definable [11].

In PCF, all computable first-order functions are
definable; these are precisely the partial recursive
functions on integers. However, there are many
higher-order computable functions which cannot be
defined even when the language is extended with
up? and pcond. One of them is a continuous ap-
proximation to the existential quantifier 3 [11]. As
in [11], this is essentially the only function miss-
ing; once 3 has been added, the language becomes
universal for the model A y.

Adequacy, full abstraction and universality mark
an intimate connection between PCF and the model
A y. The point of obtaining such a model is, in
part, to develop techniques for proving properties
about code. We give some preliminary results in
defining a logic (based on LCF [6, 13]) for a frag-
ment of PCF with up?. The logic is shown to be
sound for the model A y.

(Xx.M)N — M[x:=N]
succn -* 71 + 1

pred n — n-1
zero? 0 -> tt

zero? (n +1) — ff
cond tt M N — M
cond SM N — N

YM — M(YM)

M -+M'
MN — M'N

N —* N', c € {pred, succ, cond, zero?}

1 These results were obtained independently from Abram-
sky [1] and Ong [9, 10], who have proven similar adequacy
and full abstraction results for an untyped A-calculus. Cos-
madakis [4] has extended our results to a language with prod-
uct, sum, and recursive types.

2Every isolated element [14] in the model may be given a
Gödel number n; an arbitrary element d is computable if
{n : en is isolated and en Q d} is r.e.

cN -* cN'

Figure 1: Operational Rules for PCF

2 Review of PCF
The language PCF is simply-typed A-calculus, with
types given by the grammar

a ::== t | o \ a—*<r

The type constants t, and o are used for integers
and Booleans respectively. Structured rewrite rules
for the interpreter are given in Figure 1. We write
M -» N when M reduces to N in zero or more steps
of evaluation. A term M is stopped if it cannot be
rewritten further. For example, Ax.succ 3 does not
rewrite further, despite the fact that it has a redex
as a subterm. This is essentially the language given
in [11]. The main difference, aside from notation, is
that pred 0 —► 0 rather than stopping.

3 The Model
Our model of PCF, A y, is based on Scott domains
[14] as is the standard model A \y. The base types
are the same in both models, with A \j\i\ ■= Dl =
{±,0,1,2,...} and Ay[6\ = D° = {-L,tt,ff} or-
dered -L C x for all x. The difference between the
two models appears at higher type; in A \j, the func-
tional types are

A vl<r — T] = A vH ^ A v[r]

where D-^*E is the cpo of continuous functions
from D to E ordered pointwise [11, 13]. In A y,
we lift each function space once:

A yl<T-+r] = IT-T = (A yM^A Y[r])±

2,H

If D is a domain, (-D)j. is D with a new bottom
element added [1, 9,10]. Concretely, the elements of
(D)x are {{d, 0) : d € £>}U{-L}, ordered with LQd
for all d, and {d, 0) C (d', 0) iff d C d'. The function
■ft : D -+ (D)x with fid = (d,0) is an injection;
the function 4 :(-D)j. -* -0. witn ^(d>0) = <* and

JJ.± = _L, is the corresponding projection.
Given these elements, we assign meanings to

terms using an environment model [2, 5, 7] in the
usual way. Constants of base type mean the obvious
elements in the domains, and constants of higher
type mean lifted functions. The equations

Ay[MN]p = HAYIM]P)(AYINIP)

AyfXx.Mjp = itf,

where /(d) = A y{M}(p[x y-* d]), specify the mean-
ings of applications and abstractions.

4 Adequacy, Full Abstraction, and
Universality-

Having defined the model A y that distinguishes fi
and As.fi, we may ask to what extent the opera-
tional semantics and the model agree. A first cri-
terion is adequacy [3, 8, 11]: the semantics should
predict the observational outcome of interpreting
a term. We have chosen to observe closed terms
evaluating to a numeral at base type, and halting
at higher type. Denotationally, this corresponds to
meaning a number at base type, and meaning any-
thing but _L at higher type. For our notion of ob-
servation, A Y is an adequate model:

Theorem 1 (Adequacy) The lifted model A y »*
adequate for PCF with respect to observing numer-
als and termination, i.e., for closed terms M, inte-
gers n, and proper Booleans b,

A y\M]p = n iff M -» n
A YM/> = b iff M — b
A y{M}p #-L iff evaluation of M halts

A fully abstract model allows one to substitute
denotational reasoning for operational reasoning.

Definition 1 A denotational semantics [•] is fully
abstract (with respect to a set of observations) if
for any terms M, N, [M] = [N] iff M and N are
observationally congruent.

Plotkin [11] and Sazonov [12] show that A v is not
fully abstract: PCF lacks parallel facilities present

in the cpo semantics, facilities that can make dis-
tinctions between observationally congruent terms.
The same is true of Ay, it also contains parallel
elements.

One way to achieve full abstraction is to extend
the language. We add a parallel conditional opera-
tor pcond„ : o —* a —► <r —► <r for all types o-, with the
reduction rules (cf. [11])

pcond, tt M N
pcond„ ff M N

pcond^ B c c
(pconda^ß B M N)Q

M
N
c, where a = o, i

pcond^ B (M Q) (N Q)

B'
pcond,, BMN -* pcond. B' M N

M — M'
pcond„ BMN -+ pcond. B M' N

N -+JV'
pcond, B M N -* pcond, BMN'

But even with this addition, A y still makes too
many distinctions between terms:

Theorem 2 The model A y is not fully abstract
for PCF+pcond when observing termination.

The reason for this failure is that PCF cannot itself
make all of our observations. It can observe numer-
als, in the sense that there is a term Tn such that
TnM -» tt iff M satisfied the observation "evaluates
to n." However, one can show that there is no such
PCF-definable test for convergence at higher type.

The solution is simple; we add convergence test-
ing (cf. [1, 9, 10]) to the language. At every type,
we add the operator up? with the rules

up?c —* tt

up? (Xx.M) -» tt

M^M'
up?M —► up? M'

Theorem 3 (Full Abstraction) A y is fully ab-
stract for PCF+pcond + up? when observing termi-
nation.

In order to achieve universality for A y, an exis-
tential quantifier, which introduces unbounded par-
allelism into the interpreter, must be added to PCF
[11].

Theorem 4 (Universality) PCF with the opera-
tors pcond, up?, and 3 is universal for A y.

135

5 Logic for Lifted PCF

The adequacy and full abstraction theorems show
that A Y is a suitable guide for developing reason-
ing principles for code. A logic based on A y should
prove inequations between terms rather than equa-
tions. The constant cond also requires reasoning by
cases, viz., if an inequation is true when a Boolean
term is tt, ff, or ß, the inequation should hold.

The wffs in the logic have the form P \- M C JV,
where P is a set of inequations (c/. [13]). We write
P \- M = N as shorthand for P h M C. N and
P h N C M. Due to a lack of space, we give two
examples of axioms rather than the full logic:

0 r- MQXx.Mx

0 h M C cond (up? M) M N

(The first resembles ^reduction [2]; note that the
rule 0 h Xx.M xQM is not sound, however, since
it is not the case that A y[Ax.fi i] C A ylClJ.) One
can then show the following about the logic:

Theorem 5 (Soundness) // 0 h M Q N, then
A y[M] C .4 y[N].

The converse necessarily fails—the set of true in-
equations is not axiomatizable [13].

6 Acknowledgments

We thank Albert Meyer and Stavros Cosmadakis
for helpful discussions, and Alan Fekete for reading
an early draft of this paper.

References

[1] S. Abramsky. The lazy lambda calculus. De-
cember 17, 1987. Imperial College of Science
and Technology. Unpublished manuscript.

[2] H. P. Barendregt. The Lambda Calculus: Its
Syntax and Semantics. Volume 103 of Studies
in Logic, North-Holland, 1981. Revised Edi-
tion, 1984.

[3] B. Bloom. Can LCF be topped? In 3rd

Symp. Logic in Computer Science, pages 282-
295, IEEE, 1988.

[4] S. Cosmadakis. Computing with recursive
types. In 4.th Symposium on Logic in Computer
Science, IEEE, 1989. To appear.

[5] H. Friedman. Equality between functional.
In R. Parikh, editor, Logic Colloquium, '73,
pages 22-37, Volume 453 of Led. Notes in
Math., Springer-Verlag, 1975.

[6] M. Gordon, R. Milner, and C. Wadsworth. Ed-
inburgh LCF: A Mechanical Logic of Compu-
tation. Volume 78 of Led. Notes in Computer
Sei., Springer-Verlag, 1979.

[7] A. R. Meyer. What is a model of the lambda
calculus? Information and Control, 52:87-122,
1982.

[8] A. R. Meyer. Semantical paradigms: notes
for an invited lecture, with two appendices by
Stavros Cosmadakis. In 3rd Symp. Logic in
Computer Science, pages 236-255, IEEE, 1988.

[9] C. L. Ong. Fully abstract models of the lazy
lambda calculus. In 29th Symp. Foundations of
Computer Science, pages 368-376, IEEE, 1988.

[10] C. L. Ong. The Lazy Lambda Calculus: An In-
vestigation into the Foundations of Functional
Programming. Ph.D. thesis, Imperial College,
University of London, 1988.

[11] G. D. Plotkin. LCF considered as a program-
ming language. Theoretical Computer Sei.,
5:223-257, 1977.

[12] V. Sazonov. Expressibility of functions in
D. Scott's LCF language. Algebra i Logika,
15:308-330, 1976. (Russian).

[13] D. Scott. A type theoretical alternative to
CUCH, ISWIM, OWHY. 1969. Manuscript,
Oxford Univ.

[14] D. Scott. Data types as lattices. SIAM J. Com-
puting, 5:522-587, 1976.

[15] G. L. Steele. Common Lisp: The Language.
Digital Press, Bedford, MA, 1984.

[16] C. Wadsworth. Semantics and pragmatics of
the lambda calculus. Ph.D. thesis, University
of Oxford, 1971.

[17] C. Wadsworth. The relation between compu-
tational and denotational properties for Scott's
Do, models. SIAM J. Computing, 5(3):488-
521, 1976.

-Cambridge, Massachusetts
April 10, 1989

ih<e

DELTA: a Deduction system integrating Equational Logic and Type Assignment

V. MancaO, A. SalibraC) and G. ScolloD

C) University of Pisa - Dip. Informatica
Corso Italia 40,1-56100 Pisa, Italy

e-mail: mancav @ dipisa.uucp, and: salibra @ dipisa.uucp

(") University ofTwente - Dept. Informatica
P.O. Box 217, NL-7500AE Enschede, Netherlands

e-mail: pippo @ utinuLuucp, or: scollo @ henutS.eam

1. Introduction

Many-sorted (conditional) equational logic is the most established basis to the algebraic approach to abstract data type (ADT)

specification (see e.g. [EM 85]). However this logic proves somewhat inadequate in many practical situations, e.g. it entails
writing a large amount of equations to deal with error cases and partially defined functions. Order-sorted algebras [G 78] were

proposed in order to overcome such practical inadequacies. Nonetheless the order-sorted approach is not sufficiently flexible
to deal with some aspects of ADT specification (see [M 88] for a technically detailed criticism and [P 88] for a more flexible

approach to sort ordering and dependent types).

The A logic presented in this paper is a generalization of many-sorted equational logic that extends 'reasoning with equations'
towards 'reasoning with equations and type assignments'. It provides a single, unified framework capable to cope with diverse

phenomena such as partiality, polymorphism and dependent types. In Section 2 we illustrate and support this claim by simple
examples. Section 3 is an overview of formal definitions and results. Here we summarize the main intuitions behind this logic.

1. Elements and sorts (or types, which from now on we use synonymously) are merged in a single carrier equipped with a
binary typing relation, which assigns types to elements (hence types are elements themselves). This immediately introduces
partiality because, in general, an operation is defined only on elements of suitable types. Moreover, one gets a great amount of
flexibility and generality: several types may be assigned to an element, operations may take type arguments or yield types, etc.

2. Usual ADT presentations consist of two parts: a static one which defines the signature and a dynamic one which presents

the axioms. A A presentation, in a more general way, merges the type constraints and the equality ones. In fact, A formulae are

conditional formula? where equations and type assignments may occur indifferently in the premise and in the conclusion.

These intuitions were first exploited in [MS 88]: the typed equational logic introduced there is an extension of many-sorted
equational logic exactly in the sense mentioned above, and soundness, completeness, and initiality results were established for
it. The semantics was set in a partial-algebraic framework [ABN 80]. The pragmatics of that logic were further investigated in
[MSS 88], where we also addressed the pragmatic question of how to cater, in that framework, for functions that are partially
defined but non-strict (if_then_else_ is a typical example of such a function). We found that the typing relation may offer a
correctness tool, in the sense, for instance, that one may view as meaningless terms - but now we could otherwise say: terms
representing underdefined elements, see below - those terms to which no type can ever be assigned (in a given presentation).
Wc also noted that type as a 'correctness tool' is a concept that appears at the early days of mathematical logic (e.g. Russell).

Solicited by an anonymous referee, and inspired by Mosses' Unified Algebras [M 88], we reconsider our former enthusiasm

for partial algebras under a more critical light, coming to the conclusion that, to offer an adequate representation of partiality,
one need not necessarily embark on the semantical complications of the theory of partial algebras (we refer the reader to the

'Introduction' in [R 87] for a concise summary of those complications). The step of the present work from our former
approach is precisely this: replacing, in the general case rather than in special ones, the syntax-sided notion of meaningless
term with the semantics-sided notion of underdefined element ("ideal element", following Hubert). This amounts to choose as

111

semantical framework total, rather than partial, one-sorted algebras, yet still equipped with a binary typing relation. More
precisely, we will consider any element of the single carrier of any such algebra to be underdefined if neither any type is
assigned to it nor is itself a type assigned to some element of the carrier. In addition to the advantages that follow from the
greater simplicity of a total algebra framework, a further gain seems to be available on the methodological side too, in
connection with formal notions of refinement and implementation of specifications: elements that are underdefined at a certain

stage of a software engineering process may become defined at a later, less abstract stage - e.g. when some specific
classification of exceptions is desired. The first example below illustrates the exception by default principle, useful at the more

abstract stages of software design.

Two more examples illustrate, in complementary cases, the natural place that generality of description finds in our framework.

As a matter of fact, we find that both type polymorphism (parameterization by types) and dependent types (parameterization by
values) are representatives of the same species: functional abstraction. The freedom of term construction as a facility to
express types demolishes the syntactical barriers that in ad-hoc approaches make a uniform treatment so difficult to achieve.
Due to space limitations, the examples of the next Section have austere explanations and the formal overview of Section 3

gives just essential definitions and results with no proof. The full paper [MSS 89] is committed to a duly comprehensive

treatment, where also the further results and investigations mentioned in Section 4 are argued in technical detail.

2. DELTA specification examples

Why yet another logic? The answer takes here the form of a few simple examples. Our bare syntax is as follows: essentially, a
A specification is a named A presentation (see definitions 3.6 and 3.7) using declared variables, with the smallest (one-sorted,

ranked: see definition 3.1) signature that is compatible with the axioms of the presentations.

The theory of ADT's is often identified with the theory of stacks, due to the popularity of the stack data type as specification
example. The basic trouble is found here in determining which outcome should be expected from popping or topping the
empty stack With the following specification (on the left hand side) the terms pop(empty) and top(empty), among others,

denote underdefined elements because they occur in no type assignment of the STACK A theory.

IDENTITY (type)
x, d, c, f, t
d: type, c: type -» d to c: type
x : d, f: d to c -» apply(f,x): c
t: type -» id t: t to t
t: type, x: t -> apply(id t, x) a x

spec STACK spec
var s, i var
in empty: stack

s : stack, i: item -» push(s.i) : stack
s : stack, i: item -» pop(push(s,i)) = s
s : stack, i: item -» top(push(s,i)) s i

in

end end

The identity function is a well-known example of higher-order polymorphic function: in the example on the right hand side
above, a generic 'type' parameter is declared, to enable one to specialize the definition as desired. For instance, when using
such a definition in the context of a functional programming language, the parameter is to be instantiated by the (higher-order)
type of the basic types of that language. Note that the syntax is assumed to allow both binary infix and unary prefix operators.
Somewhat relating to the previous example, we show a use of dependent types in our last example, which can be compared
with the similar example in [P 88], slightly but necessarily less parsimonious - in our opinion (argumentation in [MSS 89]).

spec CATEGORY (obj, horn)
var x, y, z, w, f, g, h
in f: hom(x,y) -> dorn f: obj f: hom(x,y) -> cod f: obj

f: hom(x,y) -> dorn fsx f: hom(x.y) -» codf=y
x : obj -» id x : hom(x.x) f: hom(x.y), g : hom(y,z) -» f; g : hom(x,z)
f: hom(x,y) -» (id x); f s f f: hom(x.y) -* f; (id y) s f
f: hom(w,x), g : hom(x.y), h: hom(y,z) -> (f; g); h = f; (g; h)

end

/38

3. Overview of DELTA

3.1 Definition Let Q be a one-sorted algebraic signature, i.e. a set of operators each with a number specifying its arity. A A

Q-algebra A is a pair <A, :A>, with A a one-sorted (total) Q-algebra and :A (the typing) a binary relation on the carrier A of A.©

3.2 Definition A A morphism from a A Q-algebra A into a A Q-algebra B is a morphism if. A -» B that respects the typing,

i.e. such that if ai :A a2 then ty(a{) :B «Ka^- ^

3.3 Definition A A congruence on a A algebra A is a pair 9 = <s9, :9 > of binary relations on A such that:

(i) Hg is a congruence on A;
(ii) ifai s9bi andai :ec,thenbi :9 c;

(iii) if ai =9 bi and c :9 ai, then c :e bi

(iv) :AC:9-©

3.4 Definition If 0 = <=9, :e > is a A congruence on A, then we let [a]e denote the congruence class [aK and define the
A quotient A/9 to be the A algebra <A/=Q, :#& > where the typing relation is defined by [a]9 :^e Me iff *ere exist a' e [a]9 and

b' e [b]9 such that a' :e b'. ©

3.5 Definition rQ(V) =def <7Q(V), 0> is the term A algebra of signature Q and variables V, where 7Q(V) is the standard

term algebra. ©

3.6 Definition atomic Aformulce: (i) tl s t2 (equations)
(ii) tl: t2 (type assignments) with tl, t2 e TQ(V),

Aformulce: (iii) r -* a
with a an atomic A formula, called conclusion, and T a finite, possibly empty set of atomic A formulae, called assumption. ©

3.7 Definition A A presentation is a triple <Q, V, E>, where E is a finite set of A formulae on Q and V. ©

Substitution, assignment, evaluation have the usual definitions. By the evaluation lemma (existence of a unique A morphism
extending a given assignment) term evaluation is determined by assignment A satisfaction is then defined as one expects. The
A calculus |-A is a binary relation between A presentations and A formula; that is constructed using two axiom Schemas and
eight inference rule Schemas (collectively termed rules of the A calculus, for short) in the usual, proof-theoretic way. The rules
are presented in Table 1, where, understanding the signature Q. and variables V (as we will often feel free to do), we adopt the
following notation: (i) t, u (possibly with subscripts) are terms, (ii) a, ß are atomic formula;, (iii) T is an assumption, (iv) <|>isa
formula, (v) a is a substitution : TQ(V) -* Tß(V), extended to formulae in the usual way, (vi) oo is a k-ary operator. ©

1. E |-A {a} -> a Tautology

2. If E |-A r -> a then E |-A Tu{ß] -» a Monotonicity
3. E|-At = t Reflexivity

4. //E|-Ar-^t1st2 rAe/i E|-Ar^t2 = ti Symmetry

5. // E |-A T -> t! s t2 and E |-A r -> t2 = t3 then E HA T -> ti = 13 Transitivity

6. // E |-A T -» a then E |-A a(T) -> a(a) Substitution
7. // E |-A T -> ti = ui (i=l,...Jc) then E |-A T -> ffl(ti,...,tfc) = co(ui,...,uk) Replacement

8. // E I-A Tu{a} -» ß and E |-A T -> a tfen E |-A T -» ß ModusPonenj
9. // E |-A T -> ti s t2 and E |-A T ^ ti: u fften E hA T -»t2: u ry/?zng equals

10. // E |-A f -> ui s u2 and E ha f -> t: ui then E |-A T -* t: u2 Equating types

Table 1: The rules of the A calculus

/3<r

3.8 Proposition The A calculus is sound: if the A algebra A satisfies the presentation E, then it satisfies any formula derivable

from E; in symbols: (A 1= E A E |-A <t>) => ■*1= <|>. 0

3.9 Theorem The A calculus is complete: if the formula * is a logical consequence of the presentation E, then it is derivable

from E; together with the soundness (proposition 3.8), this is formulated as: E |-A <!> <=> E1= $. 0

Let Ta denote the ground term A Q-algebra; Zfc/E is then the quotient of Ta by the A congruence defined via the A calculus.

3.10 Theorem Ta/Eis initial in the class of A ß-algebras that satisfy E. 0

4. Summary of further results, current work and future developments

Further results have been obtained in [MSS 89] relating to representation in A of order-sotted logic [G 78] and of the logic of

partial algebras [B 86], [BW 82]. For instance, if O is an order-sorted presentation and $ a formula of that logic, then O l=os <t>

iff tA(0) K TA(<t>), where TA is a suitable translation operator. In a similar manner A enables one to obtain calculi and

completeness theorems for the logic of partial algebras, as well as other logics (category theory). On the computational side,

generalizations of the confluence results presented in [BK 86] are available for A.

We arc currently studying the potential of A for applications, e.g. specification of software systems: notions of hierarchy and
modularity are here the main topics of investigation. Some future work will be concerned with a particular, especially
intriguing application domain: the algebraic formulation of significant fragments of natural language grammars. We dared a
glimpse at this area in our previous work [MSS 88] and were encouraged for a great ease of expression, which ensues with

integrating equality, types and term construction.

Essential References

[ABN 80] H. Andreka, P. Burmeister and I. Nemeti, Quasivarieties of partial algebras - a unifying approach towards a two-
valued model theory for partial algebras, Preprint Nr. 557, FB Mathematik und Informatik, TH Darmstadt, 1980.

[B 86] P. Burmeister, A model theoretic oriented approach to partial algebras, Akademie-Verlag, Berlin, 1986.

[BK 86] J.A. Bergstra and J.W. Klop, Conditional rewrite rules: confluence and termination, JCSS 32,3 (1986) 323-362.

[BW 82] M. Broy, M. Wirsing, Partial Abstract Types, Acta Informatica 18 (1982) 47-64.

[EM 85] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1, Springer-Verlag, Berlin, 1985.

[G 78] J. A. Goguen, Order Sorted Algebra, Semantics and Theory of Computation R. 14, UCLA C.S.DepL, 1978.

[M 88] P.D. Mosses, Unified Algebras and Modules, DAIMIPB-266, Univ. Aarhus, C.S.Dept., OcLl988; ACM POPL *89.

[MS 88] V. Manca and A. Salibra, On the power of equational logic: applications and extensions, Proc. Intl Conf. on

Algebraic Logic, Budapest, August 8-14,1988 (to appear).

[MSS 88] V. Manca, A. Salibra and G. Scollo, On the nature of TELLUS, Memo. INF-88-57, Univ. Twente, NL, Dec.1988.

[MSS 89] V. Manca, A. Salibra and G. Scollo, Equational Type Logic, Draft, Univ. Pisa, I, & Univ. Twente, NL, Apr.1989.

[P 88] A. Poigne, Partial Algebras, Subsorting and Dependent Types, in: D. Sannella, A. Tarlecki (Eds.), Recent Trends in

Data Type Specification, Springer-Verlag LNCS 332 (1988) 208-234.

[R 87] H. Rcichel, Initial Computability, Algebraic Specifications, and Partial Algebras, Oxford University Press, 1987.

(LfO

On Algebraic Transformations of Sequential Specifications

R. Janicki

Department of Computer Science
and Systems
McMaster University
1280 Main Street West
Hamilton, Ont, Canada L8S 4K1

TJMuldner

Visiting Professor
Department of Computer Science
The University of Western Ontario
London, Ont, Canada N6A 5B7

* On sabbatical leave from:
Jodrey School of Computer Science
Acadia University, Wolfville, N.S.

In this paper we show an algebraic transformation of sequential specifications to the equivalent
concurrent specifications. Here, we consider sequential specifications in the form of regular
expressions extended with a declaration of the actions that are independent and have a potential for a
concurrent execution. This kind of a sequential specification can be represented in the sequential
programming language, called Banach. (Banach has been designed by us in such a way that the
programmer does not have to be concerned about synchronization details, [JM88, JM89].) The
concurrent specification can be translated into an equivalent concurrent specification, and finally into a
concurrent programming language, such as occam.

The above results have important applications in software technology. The user of the Banach
programming language can take advantage of the increased efficiency of concurrent architectures, and
at the same time she/he can concentrate on algorithms being implemented and disregard technical
issues, such as low-level synchronization details. The (automatic) transformation of the provided
sequential specification will yield an equivalent concurrent specification. This approach has its origin
in research described in [J81, LH82.]

A sequential specification of executions of actions from some alphabet A is given by a regular
expression R. The semantics of this specification is defined by two components ([J85, JL88]): the set
RFS(R) of resulting histories of R defined as the language generated by the expression R, and the
set FS(R) of histories, (or, firing sequences), defined as Pref (RFS(R)); where for a language

LcA*. Pref(L) = {x€A*: 3y€ A* (xy€L)}.
Concurrent regular expression is of the form CR = Rill...llRn, where for i=l,...,n; Riis a

regular expression. The semantics of concurrent expressions can be defined in an algebraic way,
using vector sequences [SM79]. First, for any action x€ A, where A is the alphabet of CR defined as
the union of alphabets of component expressions Ri, we denote by & the vector [hi(x),...,hn(x)],
where hi(x) is a if x€ Ai, and e otherwise (here, s is a distinguished element denoting null) Then we
put vect(L) = {x: x€L}, for any LcA*. Now, the semantics of CR is defined by the set of
resulting histories

RVFS(CR) = vect(A*)nRFS(Ri)x...xRFS(R„)
and the set of histories

VFS(CR) = vect(A*)n FS(Ri) x...x FS(R„).
Both these sets are closed under the operation Pref.
Note that the above semantics, described in terms of vector firing sequences, can be equivalently
described using Mazurkiewicz's traces (see [Maz77, Maz86]):

w

For u,v € A*, a shuffle of u and v is defined as

sh(u,v)={uiviU2...unvn: u=uiU2...u„, v=viV2...vn for i = l,...n, ui € A*, vi € A*}.

ForLi,L2CA*,weput
sh(Li,L2) = U^Lx.vCLz) sh(u,v).

Now, we define a parallel composition of words and languages. For a partition Ai, A2 of A and

u€Ai*,v€A2* we put
ullv=sh((A2-Ai)*,u) fl sh((Ai-A2)*,v)

and for Li C A1*, L2C A2* we put

L1IIL2 = {x: x = ullv, u€Li, v€L2).
By associativity, we extend the operation II to n words and n languages, n£2. Then, for a
CR:RilL.IIRn we can define the set of resulting histories as a parallel composition of resulting
histories of components:

RFS(Ri)IUlRFS(Rn) ; , ..*,...*
and similarly, we define the set of histories as a parallel composition of histories of components:

FS(Ri)IL.IlFS(R„). . ,
By a p-concurrent regular expression (a potentially concurrent expression) we mean a

regular expression R, the alphabet of which is partitioned into a finite number of subsets (intuitively,
actions that are mutually dependent occur in the same subset.) Thus, a p-concurrent regular
expression, (PCR) is a pair (R, A=AiuA2u...uAn) where A is the alphabet of R We define the
semantics of p-concurrent expressions using vector filing sequences (comp. [Jan85].) The set of
resulting histories of the p-concurrent expression is defined as

RVFS(CR) = vect(RFS(R)) .
and the set of histories of the p-concurrent expression is defined as

VFS(CR) = Pref (vect(RFS(R))) - Pref (RVFS(CR)).
Here, R is the first component of CR.

As above, the semantics of p-concurrent regular expressions can be defined using traces: Let 1 be
an independence relation over the alphabet A of a CR: (R, A=AiuA2U...uAn) defined as follows:
(u,v) € I if V i, u $ Ai or v $ Ai. We denote by ind a relation over A* associated with the relation I:

(u,v) € ind if v can be obtained from u by permuting successive letters that are in the relation L For a

language LC A*, a trace language, tr(L) is a set of equivalence classes L/ind of elements of L.
Now, we define resulting histories as tr (RFS(R)), and histories as Pref (tr(RFS(R))).

As mentioned above, p-concurrent regular expressions have a potential for a concurrent execution.
In order to reveal this potential, for a given p-concurrent expression PCR we should find a concurrent
expression that will be equivalent to this PCR For this sake, we now describe a transformation Q
of p-concurrent expression PCR : (R, A=Aiu A2U...uA„) into concurrent expression CR of the form
CR: RilL.IIRn (see [Jan85.]) Each of the component expressions is formed by erasing, or the
concealment in R of these actions that do not appear in Ai. Thus, Alpha(Ri) = Ai and RFS(R0 =
hi(RFS(R)). The transformation Q is not a function, that is there may be more than one element of
p(PCR). From the definition of £ it follows that

Rl II...II Rn€?(PCR) iff (Vi) RFS(R0 = RFS(PCRi8)
where PCRis is derived from PCR by replacing all elements of A-Ai by S.

We say that a p-concurrent regular expression PCR = (R, A=AiuA2U...uAn) is proper if C(PCR)
is equivalent to PCR, that is

VFS(PCR) = VFS(C(PCR)) and RVFS(PCR) = RVFS(?(PCR)).
(The above equalities are well-defined because for §1, |2€Q(PCR) we have VFS(gi) = VFS(|2) and

RVFS(fi) = RVFS(£2).)

tqz.

Example
PCR:a;b;c Ai={a,b} A2={a,c} ?(PCR)3CR: ((a;c) I I (b;c)) ■

Since the computations of PCR produce the same histories and resulting histories as the computations
of CR, the above PCR is proper. In general, a PCR and a resulting CR may have different sets of
histories and identical sets of resulting histories, or identical sets of histories and different sets of
resulting histories. An example of the former case is

PCR: (a;c;e), (b;d;f) Ai = {a,e,b,f},A2 = {c,e,d,f}
C(PCR)3CR: ((a;e), (b;f)) I I ((c;e), (d;f))

for which the sets of resulting histories are identical, but the set of histories of CR includes the
sequence ad, (leading to a deadlock), which clearly is not a history of the PCR. An example of the
latter case is

PCR:(a,b)* Ai={a} A2={b} C(PCR)*CR: a* I lb*
for which the sets of histories are identical, but resulting histories of the PCR must have the same
number of occurrences of a's and b's, while resulting histories of the CR contain arbitrary number
of these actions.

Note that in the above examples p-concurrent expressions were not proper because of the conflict
between the choice constructor "," and the independency relation: independent actions occurring in
branches of the choice were mapped by Q to different components of the parallel construct II. Thus,
we introduce synchronization guards which are in conflict with such actions. Synchronization guards
will be inserted into alternatives and loops. Formally, let I be a class of synchronized p-
concurrent regular expressions defined by the following grammar:

expr ::= el I el; el
el ::= action I (A; expr)* I (expr) I alt (A is called a synchronization guard)
alt ::= expr, (A;expr)

such that for i(a) = {j: a€ Aj} the following conditions are satisfied:

. for each loop (A;expr)* Vb€ Alpha(expr) (i(b) C i(A))

. for each alternative (exprl, (A; expr)) Vb € (Alpha(exprl)U Alpha(expr)) (i(b) C i(A))
• synchronization guards are unique

Now, we define a transformation II from the set R of all p-concurrent regular expressions into
Z. The mapping II inserts the synchronization actions as described above. Thus, the alphabet A of
any expression from 2 is extended with a number of symbols from some alphabet SYNC, disjoint
with A.

Let us explain the conditions in the definition of the class Z. The first two of the above conditions
state that synchronization guards are not independent with other actions in the same alternative, or
loop. Note that synchronization guards are not necessarily dependent with all other actions. This is
because we do not wish to limit concurrency by introducing synchronization guards, that is we
require that the set of histories of the transformed expressions with synchronizing actions concealed
should be identical to the set of histories of the original expression. For example, if

PCR: a;(b,c) Ai={a} A2 = {b,c}
then the concurrency in the expression CR: ((a; (S,A))) I I ((b, (A; c))) , resulting from the
expression

n(PCR): a; (b, (A;c)) Ai = {a,A} A2={b,c,A}
would be unnecessarily limited; for example the sequence ca is a history of PCR but is not a history
of CR.

The reason the third condition above requires synchronization guards to be unique is explained by
the following example:

H3

PCR:a,b,c Ai = {a}, A2= {b}, A3 = {c}
Here, the expression PCR1 with a non -unique synchronization guard is not proper

II(PCR):a, (A;b), (A;c) Ai = {a,A} A2= {b,A} A3 = {c,A}
but, indeed, the expression II(PCR) with unique synchronization guards is proper:

II(PCR):a, (Al;b), (A2;c) Ai={a,Al,A2} A2={b,Al,A2} A3 = {c,A2} ■

Theorem 1
Every synchronized p-concurrent regular expression from the class Z is proper.

Let XISYNC denotes the concealment of actions from SYNC. It can be proved that
synchronization guards do not limit potential concurrency:

Theorem 2
For every concurrent regular expression R

VFS(R) = VFS(II(R))ISYNC and RFVS(R) = RVFS(II(R)) I SYNC

Therefore, for a specification S of a sequential system in the form of a p-concurrent regular
expression (which can be obtained from a Banach program), we can first apply the transformation II
to get a proper specification II(S), and then the transformation £, to get an equivalent concurrent
specification C(II(S)). For example, for the expression
PCR: a,b,c, Al = {a} A2={b} A3 - {c}
we have II(R): a,(Al;b),(A2;c) Al = {a,Al,A2} A2 = {b,Al,A2} A3 - {c,A2}
and C(II(R)) is of the form: a,Al,A2 II S,(Al;b),A2 II S,8,(A2;c)

Acknowledgements ^™„^M„ * <_
The work of the first author was partially supported by the NSERC grant OGP0036539 and the work
of the second author was partially supported by the NSERC General Grant, Acadia University,
1987.

Bibliography
[JL88] R. Janicki, PJLauer. Specifications and Analysis of Concurrent Systems; The COSY
Approach. A monograph, Springer (to appear.)
[JM89] RJanicki, T.Miildner. Complete Sequential Specifications Allows for a Concurrent
Execution, ACM 1989 Computer Science Conference, Feb. 21-23,1989, Louisville, Kentucky,USA
[JM88] RJanicki, T.Müldner. Sequential Specifications and Concurrent Executions of Banach
Programs. CIPS'88. Edmonton, Canada.
[Jan88] RJanicki. How to relieve a Programmer from Synchronization Details. Proc. of 16th.
Annual ACM Computer Science Conference. Feb. 23-35,1988. Atlanta, USA.
[Jan81] RJanicki. On the Design of Concurrent Systems. Proc. 2nd. Conf. on Distributed
Computing Systems. Paris, 1981 (IEEE Press, New York, 1981, pp.455-466.)
[Jan85] RJanicki. Transforming Sequential Systems into Concurrent Systems. Theoretical Computer
Science 36 (1985), pp.25-58.
[LH82] CJLengauer, E.C.R.Hehner. A Methodology for programming concurrency: An informal

approach. Sei. Comput. Programm. 2 (1982), pp. 1-18. ~, „ ~ „„
[Maz77] A.Mazurkiewicz. Concurent Program Schema and Their Interpretations. Report DAIMI-PB-
78 , Aarhus University, 1977.
[Maz86] A.Mazurkiewicz. Trace Theory. Lecture Notes in Computer Science 255, Springer 1986.
[Shi79] M.W. Shields. Adequate Path Expressions. Lecture Notes in Computer Science 70, Springer
1979.

HH

An Algebraically Specified Language
for Data Directed Design

Eric G. Wagner
Computer Science Principles

Mathematical Sciences Department
IBM Research Division, T. J. Watson Research Center

Yorktown Heights, NY 10598 / USA

1 Introduction

This paper is a preliminary version of the background material for the talk I will be pre-
senting at the International Conference on Algebraic Methodology and Software Technology,
Iowa City, Iowa, May 22-24 1989.

For many years I have been working on algebraic/categorical methods for specifying
various programming language constructs with particular emphasis on the specification of
datatypes [10,9], and the specification of programming languages as-a-whole [5, 8, 6, 7,11].
In this paper I combine these interests, and present an algebraic/categorical specification
of a language for specifying abstract data types. My interest goes beyond the specification
of types to the more general topic of data-directed design. The key idea of data-directed
design is that software design should be centered about the design of data types rather than
about the design of procedures. I don't have the time, or space, here to present detailed
arguments for data directed design, but Bertrand Meyer gives a good presentation of them
in [2]. The basic argument is that a data directed approach supports such good things
as maintainability, reusability, and understandability. The tools from data directed design
that are used to realize these good things are such concepts as extensibility, encapsulation
(information hiding), generic types, and inheritance.

A data type is specified in my language by giving a "program" that implements it. Thus
these specification are not algebraic specifications as defined in [10, 9]. Indeed, they are,
what might be called, specifications-by-example. However, they are still abstract specifica-
tions. The desired "abstraction" is achieved through encapsulating the programs so that
one can only exploit WHAT the program does, and not HOW it does it. Needless to say,
"encapsulating programs" is not a new idea, but what is new here is that we do it in a
rigorous mathematical framework that permits analysis.

The flavor of the language is close to that of many "object-oriented languages" such
as SMALLTALK or EIFFEL. In particular, we follow SMALLTALK in using the terms
"class", "object", and "method". Roughly speaking, a class is a data type, an object is an

IH5

instance of a data type, and a method is an operation on a data type. However, objects,
in contrast to data types, have "memory" and this means that we are outside the familiar
domain of algebraic specifications. On the other hand, we are not as close to SMALLTALK
as our choice of terminology might suggest.

• We do not have any built in types, not even BOOL.

• We use a different form of objects. Most object-oriented languages define objects as
being Records, that, as elements of products. We define objects as being as Variants
over Records, that is, as elements of a sum of products (or, more precisely, as a
coproduct of products in the category of sets).

• We use a "method calling" paradigm rather than the message sending paradigm of
SMALLTALK. But a method still belongs to a specific class. We permit a method
belonging to a class k to access and/or modify the value of any its parameters or
variables of class k.

• Associated with each class k are Case, Assignment, and object creating operations
that can only be used within methods belonging to k.

Some of these differences will be motivated in more detail as we go along. For additional
motivation see (or await) [11].

The outline of the paper is as follows: Section 2 gives an informal overview of the
language. A very brief introduction into the algebraic specification of languages is provided
in Section 3. Section 4 gives the syntax of the language. Section 5 defines the class of
algebras used in the semantics which is then presented in Section 6. In Section 7 we give
examples of the use of the language to define some familar data types. Section 8 takes a
brief look at some of the issues I hope address more fully in my talk.

Some notation: Given a set K, we write K* for the set of strings on K, and (K*)* for
the set of strings-of-strings on K. We write A for the empty string in K*, and () for the
empty string in (K*)*. Given strings vi, ...,vn in K*, we write (vx) • • -(u„) to denote the
string in (£"*)* whose ith element is ut-. Given a string u we write \u\ to denote the length

of u.

2 Informal Overview of the Language

This section gives an informal overview of the language. The vocabulary used is close
to that used by the SMALLTALK community. But I want to warn both programmers and
mathematicians that words such as class, and object may not have the meaning they might

expect.
A program consists of a specification of a coUection K of classes. A class k consists of a

specification of the form of the objects of k together with the coUection of methods belonging
to k. An object in k is either, nilk, the nil object of k, or it is an instance of k. An instance
of k has a value which is a tuple of objects. The form of k specifies which tuples may occur

\Hlo

as values of instances of objects from k. A method belonging to k is a specification of an
operation on objects. The specification of a method a will specify the parameters of <r, the
temporary variables used in <r, the expression describing the steps of <r, and the class of
the result returned by a. The execution of a method of class k will, providing it terminates,
return a result and may change the value of some of its parameters.

For example, we can give a program specifying the classes: BOOL, NAT, INT,
STACK-OF-INT. The form an object of class STACK-OF-INT could specify
that an instance of object of STACK-OF-INT will have a value that is either an
empty tuple (), or a pair (S,I) where S is an object of class STACK-OF-INT
and I is an object of class INT. The intuition is that a STACK-OF-INT is either
empty or it consists of a top element I and a "substack", S, corresponding to
the remainder of the stack. The class STACK-OF-INT would have methods
for operations such as POP, PUSH, and MAKE-EMPTY-STACK. The method
for POP would specify that it has a STACK-OF-INT as parameter, and that it
returns an object of class INT. This example is worked out in detail in section 7

The form of a class k restricts the values of instances to a given sum of products of the
sets of objects of specified classes. The form of a class is fixed but the specific sets will
change with time - in effect, objects do not come into existence until they are needed.

In the example of STACK-OF-INT the form will restrict the values to the set
(1 4- (0stack X Oint)) where 1 denotes the product of the empty set of sets (the
one-element set containing the empty tuple ()), Ostack is the set of objects of
class STACK-OF-INT, and 0int denotes the set of objects of class INT.

The expression specifying the steps of a method a, belonging to class k, is built from
primitive operations together with the parameters and temporary variables of a. The desired
encapsulation of classes is achieved by restricting the writing of methods so that knowledge
of the form of a class k can only be exploited within methods belonging to the class k.
For each class k, we use the form of k to define a set of basic operations that can only be
used within expressions specifying methods belonging to k. Briefly, for each class k we have
private operations:

NEW(Jfe, i), an operation that creates a new instance of an object of class k with value the
all-mi tuple for summand i.

CASE(e0, ei,..., en), a case statement with a case for each of the n summands of k. If the
expression e0 evaluates to a tuple in the ith summand of k then the expression et- is
evaluated.

CHANGE(e0,*\ei,...,e„), an operation for changing the value of an object of class k.
Changes the value of the object of class k resulting from the evaluation of the ex-
pression e0 to the n-tuple for summand i resulting from evaluating the expressions

e\,..., en.

IH1

ACCESS(e0,t',i) , an operation for accessing components of objects of class k. The opera-
tion returns the jth component of the ith summand of the object of class k resulting
from evaluating the expression eo.

In addition there are the following public operations that can be used in any method of

any class.

NILfc a constant, denoting the nil object of class k - note that the nil objects are typed.

INST(e0, ei, e2), a conditional operation, evaluates expression e0 to get an object x of class
Jfe, then evaluates ei if x is an instance of k, but evaluates e3 if x is the nil object of k.

ASSIGN(i, e0), e0 evaluates to an object of class k which is assigned to the ith temporary
variable of class k.

e\\e2, an operation for composing the evaluations of expressions.

CALL(p, ei,..., en), an operation for calling methods of other classes. Method p is called
and passed, as parameters, the objects resulting from evaluating the expressions
d,...,en. A method belonging to a class k can only access, or change, the value
of objects of a class k' £ k by calling methods belonging to k'.

The syntax given in section 4 ensures that the applications of these operations are

well-defined.

To define the methods POP and PUSH for STACK-OF-INT we can use the
NEW, CASE and CHANGE operations corresponding to the form of STACK-OF-INT.
The NEW operation for STACK-OF-INT can be used to create either the empty
STACK-OF-INT corresponding to the empty-tuple (), or to produce a pair
(nilstack, nilint), the latter operation is not of any interest in this example. The
CASE operation for STACK-OF-INT, has two cases, corresponding intuitively to
empty-stack and non-empty stack. The CHANGE operation for STACK-OF-INT,
allows us to change the value a STACK-OF-INT object as required by the POP

and PUSH methods.

3 Algebraic Specifications of Languages

As mentioned in the introduction, I have been working on algebraic/categorical methods
for specifying the design of imperative programming languages. The idea is to provide a
framework for language design that is simultaneously operational, abstract, and prescrip-
tive. By operational I mean that I can talk about executions of programs, and about
operations such as declaring variables, creating pointers, assigning values, etc. By "ab-
stract" I mean that I can describe "what" happens without saying just "how" it is done -

IHB

for example, I can talk about "declaring variables" or "creating pointers" without giving
an overly specific implementation of this within some "machine". By "prescriptive" I mean
that the framework naturally promotes good design and understanding of good design.

Some underlying ideas of this approach are

• to model the execution of a program in terms of state transitions where the states
are algebras and represent not just "the memory" but also include "the currently
declared" types, variables, pointers, constants, etc.

• that the basic operations on states should be natural categorical operations on the al-
gebras and/or their signatures. For example, as shown in [6], declarations of variables,
pointers, and data types, can all be described in terms of pushouts in an appropriate
category of algebras.

• that records and variants are key concepts, that they correspond to products and
coproducts and that their associated morphisms (projections, injections, and medi-
ators) correspond to important programming concepts. For example, the mediating
morphism for a coproduct representing a variant correspond to the case statements
(or case expressions) used for type-safe access to the variant.

We use this approach in this paper, but, by and large, we avoid explicit mention of the
categorical constructions, and present the semantic constructions without discussing the
mathematical motivations behind them. However, examination will reveal that the defini-
tions INST, NEW, CASE, CHANGE and ACCESS operations exploit the available categorical
structure, sometimes at several levels.

Section4 gives the syntax of the language. The syntax, as given, is not very user friendly,
so we follow it by some informal sugaring which we employ in the examples in Section 7. In
Section 5 we describe the algebras that axe used to describe the states. Finally, in Section 6
we describe the operations on the state-algebras that give the semantics of the language.

4 Abstract Syntax

A specification of classes consists of the following data:

K, a set (of class names).

S, a set (of method names).

a : S -*■ K X K* X K. If a € 2, and a{o) = (k,u,t) then a belongs to the class k, has \u\
arguments where the ith argument is of class u,-, and a returns a value of class t.

t : K -> (K*)*. If i(k) = vi---vn € (K*)m with v; = v,-,i • • • v,-,„. G K*, then the class
k is at form i(k), has n summands the jth of which, for j G {l,...,n} having nj
components the ith of which, for t e {1,..., n,-}, being of class Vjfi.

\HH

r : S -+ K*. If r(a) = w, then the method a has \w\ temporaries (local variables), the ith
of which is of class to,-.

f : S -*Expr. Where f (a) is body-expression of the method o\ We call iJapr the sei
o/ expressions. If a(a) = {h,u,k) then f(cr) 6 Expr^a, the set of k-a-expressions,
denned as follows:

NILjt is a fc-<r-expression.

P^,- is a &-<r-expression if a{a) = {h,w,t) and i e {l,...,\w\} such that wt - k.

lCti is a fc-(r-expression if i G {1,..., |r(<r)|} such that r(o-)t- = k.

ei Je2 is a &-<r-expression if e\ is a j-<r-expression for some j G K, and e2 is a &-<7-expression.

INST(e0,ei,e2) is a fc-cr-expression if eQ is a j-<7-expression for some j G üf, and if e\ and
e2 are fc-<r-expressions.

ASSIGN(i, ei) is a &-<r-expression if i G {1,..., |r(<r)|}, r(<r),- = k, and ex is a fc-cr-expression.

CALL(/>, ei,..., ep) is a fc-a-expression if p G E, and there exist A and u such that a(p) =
(h,u,k), and, where « = «i'-"Up, we have that e,- is a «,-<r-expression for each

ie{i,...,p}.

NEW(fc, i) is a fc-a-expression if i G {1,. ..,\i(k)\], and <r belongs to k.

CASE(e0,ei,.. .,en) is a Jfe-<r-expression if, where a{tr) = (j,u,h), there exists j G K such
that Co is a j-<r-expression, n =|t(j)|, and, for each i = 1,.. .n, e,- is a fc-cr-expression.
Note that, here, <T belongs to j but returns a k object.

CHANGE(e0,i,ei,...,ep) is a fc-<r-expression if e0 is a fc-<r-expression, there exist u and h
such that a(a) = {&,«, &), so a belongs to k, and, where i(k) = «i • • -vn G (A"*)*, we
have» € {l,...,n}, p =|vt|, and, v,- = v,-,i • • • v,-,p where, for each j G {l,...,p}, ej is
a v<j-<r-expression.

ACCESS(e0, i,j) is a fc-a-expression if e0 is a &-<7-expression, there exist u and /i such that
a(a) = (/*,«,&), and, where t(k) = vx •••*;„ G (#*)*> we have i G {l,...,n}, and,
where t\- = v,-,i • • • v,-,p, that J G {1,...,p} and Vj = k.

The above formal syntax is too formal for convenient use, and it is advantageous to use
more suggestive, and compact, notation.

Pi for P«,,,- (that is, for example, P4 for P<r,4)
Ti for TV,,-
Ti:= ei for ASSIGN(i, ex)
p(ei,...,ep) for CALL(p,ei,.. .,ep)
e0.i<-(ei,...,eP) for CHAHGE(e0,*,(ei,...,ep»
e0.i.j for ACCESS(e0,i,j).

ISO

It will frequently be the case that we want to do a PCHANGE operation such as

Pm.i*- (Pm.i.l,.. .,Pm.i.(j-l), ejf Pm.i.(j+1),.. .,Pm.i.p)

where "only the jth component of Pm.i is changed", we will write this as

Pm.i.j *- ej.

While this is convenient notation, it is possible to misuse it and write something meaningless.
The formal syntax is the real syntax.

Not surprisingly, it will also be convenient to present the data for a class-collection in
a more informal manner. We will not attempt to explain these informalities but leave the
reader to deduce them from the examples.

5 State Algebras

Given a specification T = (K,!l,a,L,T,£) we want to define the set of many-sorted
algebras corresponding to the possible states resulting from executing the methods given
for the classes.

We start by denning the collection of T-signatures corresponding to the data T. A T-
signature (5, ft) will contain a designated sort 1, and, if k G K, with t(k) = vx • • • vn G (K*)*
and V{ = fct-,i • ••kifPi G K* then k will contribute n + 4 elements to the sort set S, namely
Vk,i, •.., Vk,n, Sk,h, Ok, and Tk. Think of Vk,i as the ith sort of instance variables for k, Sk
as the sort of summands for k, Ik as the sort of instances ofk,Ok as the sort of objects of k,
and Tk as the sort of temporary variables of k. These sorts come equipped with operations:

m'/fc : 1 -+ Ok rk:Tk-*Ok nk:Ik->-Ok
Hk'h-* Sk tk,i' Vk,i -* Sk, i = 1, •.., n
ir*Ai = Vk,i -f Okij,ie {l,...,n},j G {1,...,#}.

In addition, ft may contain a finite set of constants of sorts Ok and Tk for each k £ K.
We can represent this signature pictorially as shown in Figure 1. See Section 7 for

pictures of some actual signatures.
A T-state-algebra (or T-algebra), A, will be a (5, ft)-algebra, for some T-signature (S, ft),

where Ai is a designated singleton set also denoted 1, and for each k G K, as above,

Ac»* = A/fc + Ai, a coproduct of these sets in Set, the category of sets and
total functions, with coproduct injections (KJOA

an^ {n^k)x-

For each i G {l,...,n}, AyM = Aofcjl x ••• x Aofc.p., a product of these

sets in Set, with product projections (vk,i,i)A through (**,,><)A-
If' where

i(k) = (vi)---(vi)---(vn) we have v,- = A, the empty string, then we take

AvKi = 1.

iSi

",!.

Tk,n,pn

Figure 1: The k-component of a T-signature

Ash - Avhtl + •-• + A.vhrn, a coproduct of these

sets in Set, with coproduct injections (tjt,i)A through (tjt,n)A-

Arfc will be exactly the set of constants of sort T*.

We do not put any restrictions on A/„, (n,)^, or (fik)A, other than that the functions
be functions.

Let A be a state algebra, then the ideas behind the above definition of state-algebra are
as follows:

• An object of class k in A, that is, an element of Aok, is either the nil-object given
by nilk or it is an instance of k, that is, an element of A/„. This is just what the
coproduct says.

• Each instance of an object of class k has a value. In particular, if x G A/fc then its
value is (H)A(X) e ASk = Avw + • ■ • + Avfc,n, which is a sum of products of objects.

• Each element y of Ark corresponds to a temporary variable with value (r)A(y), an
object of class k.

6 Abstract Operational Semantics

Given the class specification T = (K, S, a, i, T, £), and given a € S with a(o) = (j, u, h)
then a a-state algebra (over I) is a T-state algebra A whose signature (S, SI) contains at

152.

least the constant symbols P<r,i,« ■ •»^a.M» corresponding to the parameters of <r, together
with the constant symbols Ta,i,... ,Ta,\T(ff)\, corresponding to the local variables for a. In
practice we axe only interested in cr-state algebras with finite carriers, and generated by
repeated "applications of body-expressions". From this we can, but won't, show that that
the a-state algebras of interest form a set, Alg9, rather than a proper class.

When a Ar-(T-expression e is applied to a <r-state-algebra A, the result, if any, will be a
pair [eJ^A) = {B,b) where B is a a-state-algebra B and 6 is an element of Bok- Let RESC

denote the set of all pairs (A, a) such that A € Alga and a G Aok. Then we can regard [e],
as a partial function,

[e], : Alga -*■ RES„.

Let A G A/&,-algebra with signature (5,H), then fe]<r(A) is denned by the appropriate
entry from the following list.

NIL* : Define [NILfcJ^A) = {A,(nilk)A).

?a,i: Define [P„,,-]«r(A) = (A, (P,,,-)A).

T,,<: Define \^AM) = (M^)A)-

ei]e2 : Define [«i;«a]ff(A) = [e2]<r((Iei]<,(A))i).

INST(eo,ci,C2): If eo is a 2-<7-expression and [e0l<r(A) = (C,c), then define

r«,«,^ \t f A\ J leil<r(C) if c^nilz [INST(e0, «i, e2)UA) = j ^j^ if c = n</-.

ASSIGNC^Ci) : If [ci]<,(A) = <B,6) then [ASSIGN(i\ei)]ff(A) = (C,b) where C is identical
to i? with the exception that (Tk)c((T<r,i)c) = b.

CALL(p,ei,...,ep) : Let (5i,&i) = [ei]«r(A), and, for* = 2,...,p,let <P,-,6,) = [e,-]«r(.S.--i).
Then, where a(p) = {&,«;,&) and r(/>) = « extend the signature (5,fi) by adding
constant symbols PPi,-, i = 1,..., |io| and Tpj, j = 1,..., \u\, and let B be the extension
of Bp such that (P„,,)s = &,• for each i = 1,..., |io|, and, (rUi)B(rPj) = nilUj, for each
j = 1,..., |u|. Then, where f(p) = e, {C,c) = [e]p(P), and £ is the <S,fi)-reduct of
C, define [CALL(p, ei,..., ep)]„(A) = <£, c).

NEW(Jfe,i) : Let B be the <r-state-algebra that results from freely adjoining an element
x to Aik and, where i(k) = «i---vn and v; = v»,i • • • ^,P G K*, taking {pk)B to
be the extension of (pk)A taking x to b = (tfc,jU((m'^;,i' • ■ •>

7
"'*«'.P))-

Tlien define

[NEW(fc,i)L(A) = (5,6).

CASE(e0,ei,...,e?) : If e0 is a z-<7-expression, where a(z) = w\ •••wq, and [e0]<7(A) =
(C,c), then define

' (C,(n«7,)c> if c = (nilz)c

[CASE(e0, ex,..., e,)|(7(A) = < [ct-]ff(C) if there exist x and y such that
I c = (Kz)c(aO and (ß2)c(x) = (h,i)c(y)-

/53

CHANGE(eo,«\ei»•••»«*) : Let (-Bo,&o> = [e0]<r(A), and, for i = l,...,plet (Bub) =
laMBi-i). Then [CHAHGE(eoft,ei,...,ep)],(A) = <C,60> where C is identical to
BP except that if bQ is an instance of k, so bQ = («fc)B,(«) for some x E (Bp)ik, then

(/■Ufc)c(x) = (t,)s„((6i,.. •, 6p».

ACCESS(c0,i, j): Let [eo],(A) = (5,6), if there exists x € A/fc such that b = (Kfc)>i(x) and
{ßkU(x) = (tf)A((ax.-...ap)), t^en [PACCESS(e0,i, j)l<r(A) = (A,a,), otherwise

[PACCESS(eo,i,i)]<r(A) = (A,IM7A>.

The above presentation of the semantics is a mite informal in that it assumes that,
for each Jfc-<r-expression e and T-algebra A, A C ([eJ(A))i in some sense that makes it
meaningful to talk of an object in x € Aok as also being an object in (([e](A))i)cv A more
precise treatment would require introducing generalized injective homomorphisms.

7 Examples of Class Specifications

In this section we give a number of examples of class specifications using the sugared
version of the syntax. Each specification builds on the ones given before. The specifications
are fairly straight forward, but generally represent very inefficient implementations. For
example, in the specification of BOOL the reader will see that each application of the
"constant operation" true generates a new object.

Example 1 Here is a specification for the class BOOL. The only surprise here may be the
operation null. This operation is needed because the CASE operation, which distinguishes
true from false, can not used outside of the BOOL class. The operation null can be used
together with the primitive operation INST to give us a general BOOLean conditional usable
in methods of any class. The signature diagram for BOOL is shown in Figure 2.

CLASS BOOL
form

i(BOOL) = (A)(A)

methods
true(y.BOOL

THEM (BOOL, 1).

false():BOOL
VEM(BOOL, 2).

and(?l, ?2:BOOL):BOOL
CASEffi, CASE(fc2, true, false), false).

i5H

GH-C

Figure 2: The Signature for BOOL

not(?l:BOOL):BOOL
CkSE(Pl, false, true).

null(?l:BOOL):BOOL
CASEf Pi, true, KTLBOOL)-

end - class BOOL

Example 2 Here is a specification for the class NAT of natural numbers. This is an
example of a "recursive class" in the sense that NAT appears in the specification of the
form of NAT. In general, a state algebra for NAT will contain only a subset of the natural
numbers. As examination of the methods will show, "NATa are only produced as needed".

CLASS NAT
form

t(NAT)= (X)(NAT)

methods
zero():NAT

mw(NAT, 1).

succ(?l:NAT):NAT
(T(SUCC) =T1:NAT)
Tl:=KZ\t(NAT, 2))T1.2*- (Pi).

pred(?l:NAT):NAT
CASEfPi, NILJVAT, Pl.1.1)■

155

add(?l, P2:NAT):NAT
CASEfPS, Pi, add(succ(Pl), pred(P2))).

subt(Pl,P2:NAT):NAT
CkSE(P2, Pi, minus(pred(Pl), pred(P2))).

eq(Pl, ?2:NAT):NAT
CASEfPi, CASE(?2, true, false), CkSE(?2, false, eq(pred(Pl), pred(P2))).

le(?l, ?2:NAT):NAT
CASEfPi, CASEfPS, true, false), le(pred(Pl), pred(P2))).

end - class NAT

Example 3 As our next example we give a specification for the class INT of integers. This
specification provides an a nice example of encapsulation. From looking at the names of
the methods one would expect that an integer z is being represented as a pair consisting of
a BOOLean, representing the sign of z, and a NATural number, representing the absolute
value of s. But the specification, actually, represents an integer z by a pair, (n,p), of natural
numbers such that if n > p then z = m-p, while if n < p then z = -]p - n\.

CLASS INT
form

i(INT) = (NAT-NAT)

methods
one():INT

(r(one) = 1UINT)
T:= NEW (INT, 1)]T.l.l.*-succ (zero)]!. 1.2<r- zero.

abs(Pl:INT):NAT
UST(null(le(P 1.1.1, Pl.1.2)), subt(P1.1.2, Pl.1.1), subt(Pl.l.l, Pl.1.2)).

sign(Pl:INT):BOOL
INSTf null(le(P 1.1.1, Pl.1.2)), false, true).

sum(Pl,P2:INT):INT
(T(SUTTI) = Tl-.INT)
11 :=NEW(WT, l)]Tl.l.l*-add(Pl.1.1, P2.1.1)]T1.1.2*-add(Pl.1.2, P2.1.2))\T1

neg(Pl:INT):INT
(r(neg) = T1:INT)
11 := KEU(INT, 1)\11.1.1*-P1.1.2\T1.1.2*-P1.1.1\11.

lS<e

Figure 3: The Signature for STACK(D)

eqint(?l, ?2:INT):B00L
eq(add(Pl.l.l, tP2.1.2), add(91.1.2, P2.1.2)).

end - class INT

Example 4 Here is the "classic example" of a data type specification, STACK(D), here
presented as a generic class, that is, D is a formal parameter that may be "passed" any actual
parameter such as BOOL, NAT, or INT. In this paper we will not go into the mathematics
of "how parameters are passed" - essentially we use the familiar pushout construction
from the theory of data types. Informally, all we have to do is "rewrite" the specification
with D replaced by the name of the desired actual parameter. The signature diagram for
STACK(DJ) is shown in Figure 3.

CLASS STACK(D) = STACK-OF-D
form

L(STACK(D)) = (\)(STACK(D)-D)

methods
pop(?l:STACK(D)):D

(r(pop) = Tl:D)
CASEfPi, Ti:=NILo, (Tl:=P1.2.2]CkSE(P 1.2.1,

P1.2+- ((P1.2.1).2.1, (P1.2.1).2.2)j;
71.

push(?l:STACK(D), P2:D):D

/S7

(r(push) = T1:STACK(D))
71:=mi(STACK(D), 2)\
CASE (Pi,

Tl.l*- (>,
11.2 <- {Pl.2.1, Pl.2.2))',

P1.2<-(11,P2)\
?2.

make():STACK(D)
(T(make) = 11:STACK(D))
11:=XEU(STACK(D), 1).

empty?(P1:STACK(D)):B00L
CASE(Pi, true, false).

end - class STACK(D)

Example 5 Our next specification is for DOUBLE-LINKS-OF-D, or 2LINK(D) - the
"links" used to make types such as doubly-linked lists, and used below to specify FINITE-
SETS-OF-D. One can think of an instance x of a 2LINK(D) object as having a value which
is a triple {I ft, rgt, val) where I ft and rgt are 2LINK(D) objects and val is an object of
class D. Informally, we think of I ft as being to the left of x, and rgt as being to the right of
x. These leads naturally to the the idea of a doubly-linked-list - a chain of 2LINK(D)s with
niTs at the two ends, but 2LINK(D) can also be used to construct many other structures.

This class is again an example of a class that is both recursive and generic. In contrast to
our other examples, this class is quite ill-behaved in that we can have complex structures of
links with very complex aliasing. This complexity is largely hidden in this specification in as
much as the choice of names for the methods only suggest the doubly-linked list application.

CLASS 2LINK(D) = DOUBLE-LINKS-OF-D
form

i(2LINK(D)) = (2LINK(D)-2LINK(D)-D)

methods
left(Pl:2LINK(D)):2LINK(D)

INSTfPl.i.i, Pl.1.1, PI).

right(Pl:2LINK(D)):2LINK(D)
INST(P1.1.2, PI.1.2, PI).

addlefl(Pl:2LINK(D), P2:D):2LINK(D)
(T(addleft) = ll-.LINK(D))
11:=1&m(2LINK(D), 1)]
INST (Pi,

158

UST(P 1.1.1,
T1.1*-{P1.1.1,P1,P2)](P1.1.1).1.2*-T1]P1.1.1*-T1,
ii.i*- (^IL2LINK{D),PI,P2)]PI.I.I*-TI ;;

71.1*- (UIl>2LINK(D), NIL2i/iVA-(£>)5 P2);.

addright(P1:2LINK(D), P2:D):2LINK(D)
left to the reader

write(Pl:2LINK(D), ?2:D):D
P1.1.3*-P2.

leftend?(Pl:2LINK(D)):BOOL
INST/PI, NILBOOL, INSTfP 1.1.1, false, true)).

rightend?(Pl:2LINK(D)):BOOL
left to the reader

drop(?1:2LINK(D)):2LINK(D)
INSTf null(leftend?(Pl)),

INSTf null(rightend?(Pl)), HTL2LINK(D), (right(Pl)).1.2*-TXlL2LINK{D)),
INST/ null(rightend?(PI)),

(left(Pl)).1.2*-XIL2LlNK{D),
(right(Pl)).l.l*-left(Pl);(left(Pl)).1.2*-right(Pl)).

Finally, assuming D has an "equality method", eqD(Pl. P2:D):BOOL, then

isin?(Pl:D, P2:2LINK(D)):BOOL
(r(isin?) = 1UBOOL)
VSSZ(P2,

UST(null(eqD(P2.1.3, PI), true, isin?(Pl, P2.1.2)),
false).

end - class 2LINK(D)

Example 6 As our final example we give a specification for the generic class FINITE-
SETS-OF-D. The specification makes use of the class 2LINK(D) but the 2LINK(D)s gener-
ated by the methods in SET(D) are encapsulated in the sense that there is no way "to get
at them" except through the methods of SET(D). Note that this generic specification makes
use of the isin? method of 2LINK(D) and thus requires that D has an "equality method"
eqD. The idea behind this specification is that we can represent a set s as a "string" of
its elements, and that we can represent the string as a chain of 2LINK(D). In the actual
specification the form of SET-OF-D is given as a triple, (Li, L2, L3) of 2LINK(D) objects.
Inspection of the methods should show that, in a string s representing a set S, L\ marks

|5<?

the beginning of s, X3 marks the end of s, and L2 is used, when necessary, to traverse s,
but is always returned to the beginning of s at the end of a method.

CLASS SET(D) = FINITE-SETS-OF-D
form

i(SET(D)) = (2LINK(D)-2LINK(D)-2LINK(D))

methods
make():SET(D)

(r(make) = T1:SET(D))
•n:=r^(SET)D), 1).

elemof?(11:D, 12:SET(D)):BOOL
(r(eIemof?) = Tl:BOOL)
Tl:= isin?(11, 12.1.2)\12.1.2^-12.1.1\11.

addelem(?1:D, 12:SET(D)):SET(D)
UST(null(elemof?(11, 12)),

P2<r- (?2.1.1, 12.1.2, (addright(12.1.3, 11)\Hght(92.1.S)))).

delelem(11:D, 12:SET(D)):SET(D)
(r(delelem) = T1:2LINK(D))
INSTY null(isin?(11, 12.1.2)),

Tl:=drop(ll, 12.1.2)]IHST(null(leftend?(P2.1.2)),
P2^(T1,T1,T1>,
1.1.2^-11.1),

12.1.2^-12.1.1).
end - class SET(D)

8 Looking Forward

This paper has concentrated on giving a description of a particular language for data
driven design and on showing some simple examples of what can be done with it. But the
real reason for developing the language was, and is, to use it as a well denned framework
in which to investigate various aspects of data driven design. I am not ready, at present,
to make any major pronouncements on data driven design, but the following remarks, and

questions, may be of interest.
While you may not be completely happy with the way I have worked out the examples

in Section 7 you will probably agree that most, if not all, of them are correct. But what does
this mean? Intuitively, it means that the denned classes have the external behavior that we
expect. What is "external behavior"? I think that, loosely speaking, external behavior is

i(*o

what we can observe by doing experiments consisting applying expressions built up using
the "public" operations INST, NIL, ASSIGN, CALL and ;. This is trickier than it might sound
since essentially all we can observe as the result of an experiment is whether or not the
result is a nil object. The idea is that the "experiments" should provide a way to identify
appropriate states and/or objects so that the resulting congruence classes correspond to the
elements of the desired abstract type. It seems fairly easy to make this precise in a manner
that will work for at least BOOL, NAT, STACK-OF-D, and FINITE-SET-OF-D. However,
we can take the specification given for FINITE-SET-OF-D, rename it NON-REPEATING-
STRING-OF-D, and informally interpret the objects as strings of elements of D in which no
element is repeated. This is fine intuitively, but the above notion of external behavior is too
strong as it identifies strings that are not the same under this new interpretation. However,
interpretation not withstanding, any application of NON-REPEATING-STRING-OF-Dwe
can replace it by FINITE-SET-OF-D and never know the difference. Still, it would appear
that the meaning of a class involves intention as well as extension. At the very least it
means that we can not necessarily grasp the intention behind a class specification just from
the formal specification.

An aspect of object-oriented programming that receives a great deal of attention is the
notion of "inheritance". This is a "concept" with many definitions, some of which seem to
be incompatible. The version I want to address is roughly the intersection of the versions
found in [3] and [2], to quote from [3]:

"Inheritance is a technique that allows new classes to be built on top of older, less
specialized classes rather than written from scratch. The new class is the sub-
class; the old one is the superclass. The subclass inherits the instance variables
and methods of the superclass. The subclass can add new instance variables
and methods of its own."

To put this into the framework of our language we need only replace the first occurrence
of the phase "instance variables" by the phrase "form t", and replace the phase "add new
instance variables" by a phrase describing some suitable notion of extending the form. The
question of what is suitable notion can wait until another day, what is important is that this
is an implementation concept in the sense that the new class, k', is defined starting from
the specification (a(fc),t(fc),f(fc)) of the old class k, rather being defined from the external
behavior of k.

The fact that "inheritance" works at the implementation level results in some confusions
at the interpretation level. We can easily take the class FINITE-SET-OF-D and add a
method for a pick operation which, when applied to a "set" s, returns "the oldest element
of s" - we just return the right-most element of D in the "string" representing s. I claim that
the resulting class is constructed in accordance with the directions given in the above quote,
and is thus technically a "subclass" of FINITE-SET-OF-D. Now it seems wrong, from a
mathematical point of view, to say that the result is a specialization of the mathematical
concept of finite sets of elements of D. However, there is no problem with viewing the
resulting class is a specialization, or extension, of the class NON-REPEATING-STRING-

lU

OF-D. This suggests that there are important semantic elements in inheritance that need
further investigation.

It is worthwhile considering if there are other ways to "reuse code", that do not lead
to such semantic problems. Certainly we can extend a class by adding methods that are
denned in terms of existing methods by means analogous to the construction of derived
operators in universal algebra. But can we do better than this? I think we can.

In Section 7, our examples are developed sequentially. That is, there are no mutually
recursive specifications. However, it is certainly possible to write such specifications in our
language. For example the definition of the class STACK-OF-D could be broken into two
separate class definitions 5 = STA CK and N = NON-EMPTY-STACK where, L(S) = ()(N)
and i(N) = (5 • D). Are such specifications needed or useful?

Ill present some answers, and more questions, in my talk.

References

[1] Goldberg, Adele and Robson, David, Smalltalk-80: The Language and its Implemen-
tation, Addison-Wesley, Reading, Mass., 1983.

[2] Meyer, Bertrand Object-Oriented Software Construction, Prentice-Hall International
Series in Computer Science (C.A.R. Hoare, Series Editor) Prentice-Hall, New York,
1988.

[3] Micallef, J., "Encapsulation, Reusability and Extensibility in Object-Oriented Pro-
gramming Languages," JOOP, April/May 1988.

[4] Wolczko, Mario, Semantics of Object-Oriented Languages Doctoral dissertation: De-
partment of Computer Science, university of Manchester, Technical Report Series

UMCS-88-6-1, 1988.

[5] Wagner, Eric G. "Categorical Semantics, or Extending Data Types to Include Mem-
ory," Recent Trends in Data Type Specification - Proceedings of theSrd Workshop on
Theory and Applications of Abstract Data Types (H.-J. Kreowski, Ed.) Informatik-
Fachberichte 116, Springer-Verlag (1985).

[6] Wagner, Eric G., "On Declarations", The International Workshop on Categorical Meth-
ods in Computer Science (Berlin, Sept. 88)

[7] Wagner, Eric G., "All recursive types defined using products and sums can be imple-
mented using pointers," To appear in the Proceedings of The Workshop on Algebraic
Logic and Universal Algebra in Computer Science, Iowa State University, 31 May-5

June, 1988.

[8] Wagner, Eric G., "Semantics of Block Structured Languages with Pointers," Proceed-
ings of 3rd workshop on Mathematical Foundations of Programming Language Seman-
tics, LNCS 298, Springer-Verlag (1988) pp 57-84.

/<*2

[9] Thatcher, James, W., Wagner, Eric G., Wright, Jesse B., "Data type specification:
Parameterization and the power of specification techniques," ACT Trans. Progrramm.
Lang, and Systems 4 (1982) pp 711-732.

[10] Goguen, Joseph A., Thatcher, James W., Wagner, Eric G., "An initial algebra approach
to the specification, correctness, and implementation of abstract data types," Current
Trends in Programming Methodology, IV: Data Structuring (R. Yeh, ed.) Prentice Hall,
New Jersey (1977).

[11] Wagner, Eric G., Selker, Ted, Rutledge, Joseph, "Algebraic Data Types and Object
Oriented Programming," Sixth Workshop on Specification of Abstract Data Types,
Berlin, West Germany, Aug 29- Sep 2, 1988. Paper, with possibly a different title, in
preparation.

.U>3

Modelling the Software Process

Charles Rattray
Department of Computing Science

University of Stirling
STIRLING, Scotland FK9 4LA

e_mail: cr@uk.ac.stir.cs

1 Introduction

Software Engineering aims to improve our ability to develop and maintain provably correct,
adaptable, and efficient software. Initial attempts to provide this improvement were based
on the software development process known as the software life-cycle.

Indeed, software engineering has matured to the point where some of its fundamental
premises should be re-examined. In particular, the traditional view of the "software life-
cycle" has been recognised as inadequate when considered with automated environments
based on "rapid prototyping" or "knowledged-based development" or the transformation
paradigm [Wil86a,ICS87,Hen89,Rat88b,Rat88c,Rat89b].

Further, in any traditional engineering discipline, re-usability (of components, designs,
manufacturing processes, ...) is of fundamental importance. In software engineering, we
are just beginning to understand this idea, but before we can incorporate it into our soft-
ware practices we must understand the process of software development. To do this we
must understand both the constituents of the development process, and the total process
itself. The common approaches to software re-usability are well-illustrated by work involv-
ing a re-usability of system components (in the form of libraries, etc [Hor84]), abstract data
types [Emb87,Gog86], and specification [Gau88]. Software re-use can be identified with
the productive re-use of software design and development in the planning, construction,
and verification of software systems; a knowledge-based model for this form of software
process re-use is described in Rattray et al [Rat89b].

A number of approaches to the study of the software process [Wil86a,ICS87,Hen89]
have been suggested. Typical is that of Osterweil [Ost87] where the view is put forward
that software processes can be described by "programming" them in much the same way
as computer applications are programmed. A criticism of this by Lehman [Leh87] is that
a process program is essentially procedural and only has merit if the problem domain is
known and well-understood, if the strategies and algorithms for achieving the desired goals
are known, and if the managerial and administrative practices are clearly defined.

Similar criticisms can be levelled at other attempts to describe software processes and
so the need to develop (mathematical) models or meta-models of the software process
has become essential. Dowson [Dow86] gives reasonable definitions for "software process",

t(*S

"software process meta-modeF and "software process model"; Wileden [Wil86b], for in-
stance, provides a possible meta-model which agrees with Dowson's definitions. None of the
models available seem appropriate. They lack precision, comprehensiveness, consistency,
and an adequate theoretical basis, and most importantly the notion of variable structure
[Zei89]. These difficulties are all overcome by a formal (meta-)model, evolutionary and
hierarchical in nature and based on a re-interpretation of elementary categorical algebra,
developed by Rattray [Rat88b] and Rattray and Price [Rat89a]. This model provides a
suitable framework within which to consider software process development and re-use.

Within this evolving hierarchical framework, systems have an internal organisation
consisting of components with interrelations; their organisation is maintained in time even
though their components are changing; their components are divided on levels correspond-
ing to the increasing complexity of their own organisation. The state of a system at any
given time is modelled by a category, the state transition by a functor, a complex compo-
nent by the (inductive) limit of a pattern of linked components. Categorical constructions
describe the stepwise formation of a system, by means of operations: absorption of exter-
nal components from the environment, destruction of some components, formation of new
complex components. By defining the notion of a mapping (morphism), compatible with
the evolving hierarchical structure, between frameworks it is possible to compare software
development processes.

In many situations, software maintenance for example, our knowledge of the software
product may not be complete (lack of documentation, change of personnel, etc). Informa-
tion to and from the software system may then be supposed to be conveyed through limited
parts of it called "actors", dynamically interacting with the system. Each actor has only
partial information of the system. For each actor, we can construct a category, its "field
of vision", which contains the fragments of the software system available to it; these fields
are connected via "communication" functors. From this, we can deduce a representation
of the totality of fragments attainable through the actors. For the outside observer the
actors' view need not be a faithful representation of the actual software system and the
difference is measured by a "distortion" functor. The actual system may be subject to
modifications outside the scope of the actors. The difference between the software system
as "anticipated" by the actors and the system after external modification can be mea-
sured by a comparison functor; the measurement represented by the comparison functor
is available at the level of the actors and indicates how to reduce the difference.

In this paper, we review the framework, which has its origin in the biological sciences
[Ehr85,Ehr86], as a vehicle in which to consider models of the software process. Using
the kinds of measurements mentioned above we illustrate how it is possible to devise
construction strategies for building complex systems or understanding existing software
products. As an application of the evolutionary hierarchical framework, we indicate how
the model may be helpful in understanding software re-usability by considering this from
the point of view of re-usability of software processes [Rat88a]. The same framework is
being developed to provide the underlying model for the design of a practical experimental
program design environment [Rat89a].

((*<*

2 Elements of a Meta-Model

"A system is a set of units with relationships among them* [Ber56]. The notion of a
category matches well with this description whereby the objects of the category model the
system units and the arrows of the category model the system relationships. Graphical
descriptions of system models from which the software is generated are equally common.
Typically, SADT1 (Structured Analysis and Design Technique [Mar87]) uses hierarchies of
directed graphs the nodes of which have a particular form. Each node is an abstraction
(complex component) the internal organisation of which is described by a directed graph.

2.1 Complex Components

A pattern is a graph morphism P : G —► K from a graph G to a graph K. Graph G
prescribes the shape of the diagram and may be viewed as a sketch (a prototype) of a
system's structure, ie pattern P defines a pattern of linked (related) objects in K.

Suppose K is a category of such objects and P is a pattern of objects in K, whose
prototype is G. The object Pit indexed by the node * of the prototype is called a component
o/K; the image P(a) of an arrow a of the prototype is a specific link between components.
Such a specific link indicates a relationship between the objects, eg a form of module
coupling, a data flow, file transfer, network link, a dependency relation,

The key notion in developing complex components of any software system lies in the
need to ensure that system changes have only a localised effect. Essentially, the complex
component has a certain external behaviour, determined by its internal organisation and
function which is unknown and unavailable to the environment of the component. Thus,
internal changes to the component which preserve the external behaviour will have no
adverse effects on the environment .This localisation property is known as "information
hiding" [Par72].

The idea of stepping back from the detailed internal behaviour of a component so
that our understanding of the component is determined by its external behaviour is called
abstraction. An excellent definition [Weg76], due to Wegner, says

An abstraction of an object is a characterisation of the object by a subset of
its attributes If the attribute subset captures the "essential" attributes of
the object, then the user need not be concerned with the object itself but only
with the abstract attributes.

A collective link of the pattern P to the object C of the category is a family of arrows
fi, indexed by the nodes of the prototype G, where /,• is an arrow from the component
Pi to C, which satisfies the compatibility condition: if a is an arrow from t to j in the

*SADT is a trademark of SofTech, Inc.

1<*1

prototype, then ft is the composition of P(a) and /,-, ie

fi = {PimPjJuc)
An inductive limit of pattern P is an object C" of the category K such that, for any

object C, the arrows from C to C are in one-one correspondence with the collective links
from P to C. The unique arrow / associated with the collective link (/,•) is said to bind

the /,s.
Thus, the limit object binds together the component objects according to their internal

organisation determined by the corresponding prototype. The component Pi of the pattern
P is called a component object of the limit C". The properties of an object depend on the
number and nature of the arrows which link it to other objects of the category K. It is
natural to compare the properties of the complex object C" with those of its components.

The category K models the environment of the pattern P. Modification of the envi-
ronment category may take various forms. For instance, enlarging K to L or blurring the
distinction between two K objects in L may make retaining the limits difficult. It may be
that a pattern P cannot be bound to a limit in K but can be forced to have a limit in an
extended environment L.

A modification to the environment will be modelled by a functor F from K to a "new"
category L. The image pattern of P by F is the pattern Q of linked objects in L defined
by the composition of P and F. Functor F preserves collective links and cones but not
necessarily limits. Changing the environment K may change the behaviour of a pattern of
linked objects. This suggests the possibility of changing the environment purposely so that
complex objects binding given patterns of linked objects may be formed. To achieve this a
functor F from K to the "smallest possible" category L containing K must be constructed
such that the image of each pattern P admits a limit in L, and the image of each given
cone is a limit-cone.

2.2 Hierarchical Systems

A hierarchical system is a category K in which the objects are distributed on levels
(0,1,... ,p), such that each object of level n + 1 (n < p) is the limit in K of a pattern P
of linked objects on level n.

In such a hierarchical system the system components are associated with levels corre-
sponding to increasing complexity of their internal organisation. Any object at level n+1
is the limit of a pattern of linked objects at level n but it may form part of a pattern of
linked objects whose limit is at level n + 2. A functor between hierarchical systems pre-
serves hierarchies if it does not raise the level of an object and, indeed, any two hierarchical
systems may be compared from some particular level upwards.

/^8

2.3 Evolution of a System

Software changes with time (in its development phase and during its use); new compo-
nents are formed, either added from an external source or by construction from simpler
components; old components may be re-organised or discarded.

To model this situation the state of the system at "time" t is represented by a category
Kt, and its state transition is determined by a functor from Kt to Kt„ its state at a later
time t* (there is no requirement for the objects and arrows at t and t* to be the same). A
component is "new" at time t if it has no earlier state.

An evolutionary (hierarchical) system K is just a functor from a subcategory T of the
category of time, Time, to a category of categories.

To compare software process models within this system we need to define a morphism
between evolutionary systems, ie. to compare states of the systems at corresponding times.

Let K be an evolutionary system on T, and C an evolutionary system on U (a sub-
category of Time). A morphism from K to t consists of a functor <p from T to U and a
natural transformation from K to the composite of <p and £. This leads to the category
of evolutionary systems.

3 Conclusions

A meta-model for the software process has been outlined. This is based on some elementary
properties of categorical algebra. The meta-model provides the framework within which
to discuss software process models, to compare them, and perhaps to develop new ones.
The same framework can lead quite naturally to the design of a knowledge-based software
design environment which promotes the notion of software process re-usability.

References

[Ber56] L von Bertalanfly: Les ProbUmes de la Vie, Gallimard, Paris, 1956.

[Dow86] M Dowson: "The Structure of the Software Process", in [Wil86a].

[Ehr85] A C Ehresmann, J-P Vanbremeersch: "Systemes Hierarchiques Evolutifs: une
modelisation des systemes vivants", Prepublication No 1, Universite de Picardie,
1985.

[Ehr86] A C Ehresmann, J-P Vanbremeersch: "Systemes Hierarchiques Evolutifs: modele
d'evolution d'un Systeme ouvert par interaction avec des agent", Prepublication
No 2, Universite de Picardie, 1986.

[Emb87] D W Embley, S N Woodfield: "A Knowledge Structure for Re- Using Abstract
Data Types", in [ICS87].

/4P9

[Gau88] M C Gaudel, T Moineau: "A Theory of Software Re-Usability", ESOP '88, LNCS
300, Springer-Verlag, 1988.

[Gog86] J Goguen: "Re-Using and Interconnecting Software Components", IEEE Com-
puter, 19, 2, 1986.

[Hen89] Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, (editor: P B Henderson), SIG-
PLAN Notices, 24, Feb 1989.

[Hor84] E Horowitz, J B Manson: "An Expansive View of Re-Usable Software", IEEE
Trans on Software Engineering, SE-10, 5,1984.

[ICS87] Proceedings of the 9th International Conference on Software Engineering, Mon-
terey, California, IEEE Computer Society Press, 1987.

[Leh87] M Lehman: "Process Models, Process Programs, Programming Support", in
[ICS87].

[Mar87] D A Marca, C L McGowan: SADT: Structured Analysis and Design Technique,
McGraw-Hill, 1987.

[Ost87] L Osterweil: "Software Processes are Software too", in [ICS87].

[Par72] D L Parnas: On the criteria to be used in decomposing systems into modules,
Communications of the ACM, 15, 12, December 1972.

[Rat88a] C Rattray: "Evolutionary Hierarchical Systems: a Categorical Model for the
Software Life-Cycle", IMA Conference on Mathematical Structures for Software
Engineering, Manchester, July 13-15, 1988.

[Rat88b] C Rattray, J Mclnnes, A Reeves, M Thomas: "Knowledge-Based Software Pro-
duction: from Specification to Program", Alvey Conference, Swansea, 1988.

[Rat88c] C Rattray, J Mclnnes: "Software Re-Usability in a Knowledge- Based Environ-
ment", 3rd Annual Knowledge-Based Assistant Conference, Rome Air Develop-
ment Center, Utica, 1988.

[Rat89a] C Rattray, D Price: "Sketching an Evolutionary Hierarchical Framework for
Knowledge-Based Systems Design", EUROCAST '89, Las Palmas, Feb 26 - Mar
3, 1989.

[Rat89b] C Rattray, J Mclnnes, A Reeves, M Thomas: "A Knowledge-Based Model for
Software Re-Usability", in Artificial Intelligence and Software Engineering
(editor: D Partridge), Ablex Publ Co, 1989.

\10

[Weg76] P Wegner: Programming languages - the first 25 years, IEEE Transactions on
Computers, C-25, 12, December 1976.

[Wil86a] Proceedings of the International Workshop on the Software Process an Software
Environments, (editors: J C Wileden, M Dowson), ACM Software Engineering
Notes, 11, 4, Aug 1986.

[Wil86b] J C Wileden: "This is IT: a Meta-Model of the Software Process", in [Wil86a].

[Zei89] B Zeigler, H Prahofer: " Systems Theory Challenges in the Simulation of Variable
Structure Systems'', EUROCAST '89, Las Palmas, Feb 26 - Mar 3, 1989.

m

Path Grammars
Charles Wells

Department of Mathematics
Case Western Reserve University

Cleveland, OH 44106
USA

1 Introduction

This note introduces the concept of path grammar, which allows the speci-
fication of paths in a directed graph by a method generalizing the ordinary
concept of grammar for strings in an alphabet. The concept of derivation
and the special notion of context-free path grammar are defined. A pumping
lemma for context-free path languages is stated.

2 Graphs and 2-graphs

By graph we mean a directed graph; we allow loops and we allow more
than one arrow between the same pair of nodes. A graph generates a free
category with the universal property that every graph homomorphism to the
underlying graph of a category lifts to a functor. A node n of a graph is a
source if there is a path from n to each other node of the graph, and a sink
if there is a path to n from each other node in the graph.

A 2-graph is a graph with possibly some 2-cells. A 2-cell may be thought
of as an arrow between paths. Precisely, a 2-cell has a source and a target,
each of which is a path in the graph with the same beginning and ending
nodes. The source and target of the 2-cell may be the same and there may
be more than one 2-cell between the same two paths.

A 2-category is a category C with, for each pair of objects A, B, a
category structure on Hom(A, B) satisfying certain requirements spelled out,
for example, in reference \K\. The arrows of the category Hom(A, B) are
called 2-cells. A 2-graph generates a free 2-category with universal property
analogous to that of the free category generated by a graph.

73

3 Path grammars

A path in a graph is a generalization of a string in an alphabet: it is a
generalization because one can describe the characters in the alphabet as
loops in a one-node graph. In general, one does not get arbitrary strings
of arrows in the graph: they must compose head to tail. This suggests the
possibility of describing the well formed programs of a programming language
as paths in a graph in which the nodes are the types and the arrows are the
operations. The composition operation is automatically typechecked in such
a description.

3.1 G rammars The concept of 2-graph allows the possibility of build-
ing a theory of grammars for paths in a graph which is analogous to and
incorporates the ordinary concept of grammar or production system.

Definition 3.1 A path grammar Q = (G, V, T, S) consists of a 2-graph
G whose arrows are the union of two disjoint sets V (the variables) and T
(the terminals), together with a distinguished arrow S in V. The 2-cells are
called productions.

Definition 3.2 The grammar (G, V,T,S) is context-free if the begin-
ning of every production is a path of length 1.

3.2 Derivations A context-free grammar in the usual sense comes
with the concept of a derivation tree of a string. The author is unaware of
generalizations of this concept to larger classes of grammars. However, work
of A. J. Power (P] leads to a natural general idea of derivation.

Definition 3.3 A pasting scheme is a planar graph D with the following
properties:

P.l D has a source and a sink.

P.2 For every interior face F of D, there are distinct vertices s{F) and t(F)
and directed paths a(F) and r(F) from a(F) to t(F) such that the
boundary of F is <T(F)[T(F)]

R.

D is a context-free pasting scheme if for each face F, the path a{F) required
by P.2 is of length 1.

A pasting scheme D has a canonical 2-graph structure whose underlying
graph is D and which has one 2-cell a(F): a(F) -* r(F) for each face F of
D.

<7V

Definition 3.4 Let Q a (G, V, T, S) be a path grammar. A derivation
consists of

D.l A pasting scheme D.

D.2 A 2-graph homomorphism h from the canonical 2-graph structure on
the scheme D to 6.

If the external boundary of D is arR, where a and r are paths from the source
to the sink of D, and o and r are labeled via h by paths w and x respectively,
then D is said to be a derivation of x from w.

It follows from Theorem 3.3 of Power [P] that the 2-cells in a derivation
compose to a unique 2-cell in the free category generated by G. In the case
of an ordinary context-free grammar (so G has one node) a derivation is
equivalent to what is called a derivation tree in |HU].

4 The language of a grammar
Theorem 4.5 LetQ = (G,V,T,S) be a grammar. The language L(Q)
of Q is the set of paths w in G with the properties:

L.l All of the arrows in w are in T.

L.2 There is a derivation of w from S.

A set L of paths in a graph is context free if the graph underlies the
2-graph G of a finite context-free path grammar Q and L is the language of
9.

When a grammar is applied to the specification of programs in a functional
programming language, a particular choice of initial arrow S produces the set
of all programs with specific input and output types.

4.1 A pumping lemma The following theorem is a generalization
of the pumping lemma for ordinary context free grammars and is proved in
the same way.

Theorem 4.6 Let L be a context-free set of paths in a graph G. Then
there is an integer n for which, if z is a path in L of length greater than n, then

. there is a composable sequence {u,v,w,x,y) of paths in G with the following
properties:

115

PL.l The composite vwx has length < n.

PL.2 Both v and x are loops.

PL.3 Either v or x is nonempty.

PL.4 z = uvwxy.

PL.5 For every nonnegative integer m. uvmwxmy € L.

5 Remarks

Context-free grammars have long been used as a first cut in defining pro-
gramming languages. These do not completely define the language because
of additional context-sensitive restrictions such as type checking and bound
checking. Type checking, but not bound-checking, is handled automatically
by the use of context-free path grammars.

By adding equations on the paths and requirements on the nodes of a
path-grammar which force them to be limits (as in the theory of sketches,
[WB] and [W]) it should be possible to handle bound-checking as well. This
is the subject of current joint work with A. J. Power.

6 References

|HU] J. E. Hopcroft and J. D. Ullman, Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley, 1979.

[K] G. M. Kelly, Basic Concepts of Enriched Category Theory. Cam-
bridge University Press, 1982.

[P] A. J. Power, A 2-categorical pasting theorem. J. Alg., to appear.
[W] C. Wells, A generalization of the concept of sketch. To appear in Theo-

retical Computer Science.
[WB] C. Wells and M. Barr, The formal description of data types ustng

sketches, in M. Main et al, eds., Mathematical Foundations of Pro-
gramming Language Semantics. Lecture Notes in Mathematics 298,
Springer-Verlag, Berlin, Heidelberg, New York, 1988.

Author's e-mail address: WELLS®CWRU.BITNET

/7k

ENRICHED CATEGORIES AND THE FLOYD-WARSHALL CONNECTION
Vaughan Pratt

Computer Science Dept.
Stanford University

April, 1989

Abstract

We give a correspondence between enriched categories and the Gauss-Kleene-Floyd-Warshall
connection familiar to computer scientists. This correspondence shows this generalization of
categories to be a close cousin to the generalization of transitive closure algorithms. Via this
connection we may bring categorical and 2-categorical constructions into an active but alge-
braically impoverished arena presently served only by semiring constructions. We illustrate
these techniques by applying them to BirkofF's poset arithmetic, interpretable as an algebra of
"true concurrency.''

The Floyd-Warshall algorithm for generalized transitive closure [AHU74] is the code fragment

for v do for u, tu do Suw + = Suv • Sv uutu-

Here Suu denotes an entry in a matrix S, or equivalently a label on the edge from vertex u to vertex
v in a graph. When the matrix entries are truth values 0 or 1, with + and • interpreted respectively
as V and A, we have Warshall's algorithm for computing the transitive closure S+ of S, such that
$£, = 1 just when there exists a path in S from u to v. When the entries are nonnegative reals,
with + as min and • as addition, we have Floyd's algorithm for computing all shortest paths in a
graph: 8+v is the minimum, over all paths from u to v in S, of the sum of the edges of each path.

Other instances of this algorithm include Kleene's algorithm for translating finite automata into
regular expressions, and Gauss's algorithm for inverting a matrix, in each case with an appropriate
choice of semiring.

Not only are these algorithms the same up to interpretation of the data, but so are their correctness
proofs. This begs for a unifying framework, which is found in the notion of semiring. A semiring
is a structure differing from a ring principally in that its additive component is not a group but
merely a monoid, see AHU [AHU74] for a more formal treatment.

Other matrix problems and algorithms besides Floyd-Warshall, such as matrix multiplication and
the various recursive divide-and-conquer approaches to closure, also lend themselves to this ab-
straction.

This abstraction supports mainly vertex-preserving operations on such graphs. Typical operations
are, given two graphs S, e on a common set of vertices, to form their pointwise sum S+e defined as
(8 + e)uv = Suv + euv, their matrix product 5e defined as (Se)uv = 5U_ • e_„ (inner product), along
with their transitive, symmetric, and reflexive closures, all on the same vertex set.

We would like to consider other operations that combine distinct vertex sets in various ways. The
two basic operations we have in mind are the disjoint union and cartesian product of such graphs,
along with such variations of these operations as pasting (as not-so-disjoint union), concatenation
(as a disjoint union with additional edges from one component to the other), etc.

An efficient way to obtain a usefully large library of such operations is to impose an appropriate
categorical structure on the collection of such graphs. In this paper we show how to use enriched
categories to provide such structure while at the same time extending the notion of semiring to the
more general notion of monoidal category. In so doing we find two layers of categorical structure:

111

enriched categories in the lower layer, as a generalization of graphs, and ordinary categories in the
upper layer having enriched categories for its objects. The graph operations we want to define are
expressible as limits and colimits in the upper (ordinary) categories.

We first make a connection between the two universes of graph theory and category theory. We
assume at the outset that vertices of graphs correspond to objects of categories, both for ordinary
categories and enriched categories. The interesting part is how the edges are treated.

The underlying graph U(C) of a category C consists of the objects and morphisms of C, with
no composition law or identities. But there may be more than one morphism between any two
vertices, whereas in graph theory one ordinarily allows just one edge. These "multigraphs" of
category theory would therefore appear to be a more general notion than the directed graphs of
graph theory.

A staple of graph theory however is the label, whether on a vertex or an edge. If we regard a
homset as an edge labeled with a set then a multigraph is the case of an edge-labeled graph where
the labels are sets. So a multigraph is intermediate in generality between a directed graph and an
edge-labeled directed graph.

So starting from graphs whose edges are labeled with sets, we may pass to categories by specifying
identities and a composition law, or we may pass to edge-labeled graphs by allowing other labels
than sets. What is less obvious is that we can elegantly and usefully do both at once, giving rise to
enriched categories. The basic ideas behind enriched categories can be traced to Mac Lane [Mac65],
with much of the detail worked out by Eilenberg and Kelly [EK66], with the many subsequent
developments condensed by Kelly [Kel82]. Lawvere [Law73] provides a highly readable account of
the concepts.

We require of the edge labels only that they form a monoidal category. Roughly speaking this
is a set bearing the structure of both a category and a monoid. Formally a monoidal category
D = {D,®,I,a,\,p) is a category D = (D0,m,i), a functor ® : D2 -+ D, an object I of D, and
three natural isomorphisms a : c® (d® e) -* (c® d) ® e, \ : I ® d-> d, and p : d® I —► d. (Here
c® (d® e) and (c® d) ® e denote the evident functors from D3 to D, and similarly for I® d, d® I
and d as functors from D to D, where c, d, e are variables ranging over D.) These correspond to the
three basic identities of the equational theory of monoids. To complete the definition of monoidal
category we require a certain coherence condition, namely that the other identities of that theory
be "generated" in exactly one way from these, see Mac Lane [Mac7l] for details.

A D-category, or (small) category enriched in a monoidal category P, is a quadruple {V,S,m,i)
consisting of a set V (which we think of as vertices of a graph), a function S : V2 —> JDo (the
edge-labeling function), a family m of morphisms mUUU) : S(u,v) ® S(v,w) —► 8(u,w) of D (the
composition law), and a family i of morphisms iu : I —► S(u,u) (the identities), satisfying the
following diagrams.

^£(ti,v)5(t/,to)£(iü,;c)
(S(u,v) ® S(v,w))® 5{w,x) ► S(u,v)®(S(v,w)®S(w,x))

muvm ® 1 1® m vwx

S(u,w)®S(w,x) ► S(u,x) < S(u,v) ® S(v,x)

ilB

I®S{u,v) ► 8{u,v) < S[u,v)®I

l'u® 1

S(u,u) ® 8(u,v)
T7luuw

S(u,v)
mv

1® t„

5(u, v) ® 6(v, v)

Inspection reveals the first of these as expressing abstractly the associativity of composition and
the second as expressing the behavior of identities.

Associated with the notion of P -category is that of P -functor F : A —► B where A and B are
P -categories. This is just like an ordinary functor for its object part, mapping objects of A to
objects of B via / : ob(A) —► ob(B). The usual morphism part of a functor now becomes a family
TUV : 8A(u,v) -» Sß(fu, fv) of morphisms of P:

SA(U,V)

f SB(fuJv) ,

which compose vertically in the obvious way.

The class of all D -categories and P -functors then forms a (large) category, called P-Cat.

The category Cat of all small categories can now be seen to be Set-Cat. Rendering this abstraction
more accessible and appealing is the very pretty case P = R>p

0 = {{R>o, >),+,0), reverse-ordered
nonnegative reals under addition, for which R-Cat becomes the category of (generalized) met-
ric spaces, with the composition law as the triangle inequality and functors as contracting maps
[Law73]. Enriched categories first appeared in computer science with P = Poset = (Poset, x,l)
[Wan79] yielding order-enriched categories, a natural notion for domain theory. Poset itself is de-
finable as (the antisymmetric subcategory of) (({0,1},—►),A,1)-Cat, categories enriched in truth-
values.

We may now make the connection with semirings. The enriching monoidal category {D, ®, I, a,^,p)
has for Do the set of edge labels, for ® the semiring multiplication, and for its coproduct (which
therefore needs to exist in P) the semiring addition. The usual requirement of distributivity of mul-
tiplication over addition is met when when P is biclosed—® has a right adjoint in both arguments—
with P closed corresponding to one-sided distributivity. (In these situations P cartesian closed is
the exception rather than the rule.)

Although the literature has tended to make enriched categories seem if anything more abstract and
forbidding than ordinary categories to most computer scientists, this perspective puts enrichment
in quite a different light for those familiar with the Floyd-Warshall connection. For P a preorder
with finite coproducts, enriched categories simply become the reflexive and transitive edge-labeled
graphs output by the Gauss-Kleene-Warshall-Floyd algorithm. For P not a preorder, such as Set or
Cat, yielding respectively ordinary categories and 2-categories, the notion becomes more involved

w

(to which a categoriphobe might say "Ah, so that's the problem") but necessarily so for Gauss's
algorithm, whose semiring addition is not idempotent.

This is a nice perspective in its own right, but it becomes considerably more useful when the 2-
categorical structure of P-Cat is brought to bear on the description of particular algebras. We
illustrate this by applying it to the categorical treatment of Birkhoff's arithmetic of posets [Bir42]
and its generalization to other metrics besides the truth-valued metric used for posets. This arith-
metic provides a nice abstraction of the sort of concurrency operations we have been advocating
[Pra86] to make the "true concurrency" or partially-ordered-time approach more algebraic

Birkhoff defines six operations on posets: addition, multiplication, and exponentiation, each in
a cardinal and an ordinal version, as a way of unifying cardinal and ordinal arithmetic. (In the
concurrency connection cardinal vs. ordinal corresponds to parallel vs. sequential.) The cardinal
operations are conveniently described as universals in Poset, the ordinals not quite so conveniently
categorically, but 2-categorically ordinal addition becomes just cocomma, indicating that the move
from parallel to sequential can usefully be accompanied by a move from categories to 2-categories.

Birkhoff arithmetic admits useful generalizations to other semirings qua monoidal categories, suit-
able for modelling real-valued time in various forms: upper bounds, lower bounds, intervals, and
arbitrary sets of reals, each associated with a specific monoidal category, but with the definitions of
the associated arithmetic operations unchanged. These generalizations in turn suggest additional
constructs, also definable universally, that would have been meaningless or degenerate in Birkhoff's
original framework, but that have useful applications to the specification of real-time processes.

The prospect of a connection with Girard's linear logic obliges us to point out that as both an
expansion and a nonconservative extension of the above theory, linear logic with negation is too
strong for the purposes of making the connections of this paper, which are more appropriately
described as aspects of a fragment of linear logic.

References

[AHU74] A.V. Aho, J. E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass, 1974.

[Bir42] G. Birkhoff. Generalized arithmetic. Duke Mathematical Journal, 9(2), June 1942.

[EK66] Samuel Eilenberg and G. Max Kelly. Closed categories. In S. Eilenberg, D. K. Harrison,
S. MacLane, and H. Röhrl, editors, Proceedings of the Conference on Categorical Algebra,
La Jolla, 1965, pages 421-562, Springer-Verlag, 1966.

[Kel82] G.M. Kelly. Basic Concepts of Enriched Category Theory: London Math. Soc. Lecture
Notes. 64, Cambridge University Press, 1982.

[Law73] W. Lawvere. Metric spaces, generalized logic, and closed categories. In Rendiconti del
Seminario Matematico e Fisico di Mäano, XLIII, Tipografia Fusi, Pavia, 1973.

[Mac65] S. Mac Lane. Categorical algebra. Bull. Am. Math. Soc, 71:40-106, 1965.

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.

[Pra86] V.R. Pratt. Modeling concurrency with partial orders. International Journal of Parallel
Programming, 15(1):33-71, February 1986.

[Wan79] M. Wand. Fixed-point constructions in order-enriched categories. TCS, 8(l):13-30,1979.

I GO

Finite automata, algorithms and proofs.
(Abstract)

Dauchet, M. & Tison, S.
LIFL (URA369-CNRS), University de Lille-Flandres-Artois.
UFRIEEA, 59655 VILLENEUVE D 'ASCQ Cedex FRANCE.

e mail: dauchet@frcitl71 .bitnet

Abstract: Generalized automata are a tool for efficient algorithms design...

A short introduction to the usual Tree Automata: The definition is a natural
generalization of the usual word automata, (see for example [5,17,26] for the algebraic frame and
[22] for the algorithmic point of view). From an "algebraic data types" point of view, states can
be seen as sorts of an underlying ordered sorted algebra [2].

Example: Let M the (bottom-up, i.e. frontier-to-root) tree automata defined by the ranked
alphabet A, the set S of states, the set F of final states (F is a subset of S) and the set R of rules
(each rule can be seen as a signature):

A - {+.V.-, sue, 1,0}. +,*,/ and - are binary operators (rank 2); sue is unary (rank 1);
1 and 0 are constants (rank 0). S = {isal, inl. bQ2l};

rules: o -»isal; o -» ini; o -»bool; 1 -» real; 1 -»inl; 1 -> tool;
+(real. real! -» ££3l; +(ini, inl) -» iOL ; +(bQQl. baol) ~> fcfiOl >

*(laaL isaD -> isal; *(inl. inl) -* InL; *(haaL baol) -> booi ;
-(teaL isal) -> isal; -(inl, inl) -> ini-; /(i£aL isal) -> isal; suc(im) -»im

iOi -> xaai (sorte inclusion is denoted by this special kind of rule without fonction symbol,

also called £-transition)

Intuitively, the automaton M computes from the leaves to the root the sort of a term t. (M[t]
denotes the set of states reached by M at the top of t). It fails if a term is bad-sorted and it is
non-deterministic because a term can get several sorts. M is said deterministic iff no M[t]
contains two states.

Example: M[0] - (real. Int. booll: M[-{1,1)] - {l£aL, inl }; M[/(1,+(1,1)] = {isal} ;
M[suc(/(1,+(1,1))] is empty (i.e. M fails).

A term t is recognized iff M[t] contains at least a final state. A set of terms is recognizable iff
it is the set of terms recognized by some automata.

There exists an algorithm of non-determinism reduction and an algorithm of minimalization;
they work like in the word case. So, M' below is the minimal deterministic automaton equivalent
to M.

rules of M": 0 -> rib ; 1 -> rib; +(rib,rib) -> rib ; *(rib,rib) -» rib ; -(rib.rib) -» ri;

/(rib) -> r ; succ(rib) -> i ; +(ri,rib) -> ri ; +(rib,ri) -> ri; +(ri,ri) -» ri; *(ri,rib) -» ri

; *(rib,ri) -> ri; *(ri,ri) -* ri; -(ri.rib) -> ri ; -(rib.ri) -> ri; -(ri.ri) -* ri; -(rib.rib)

-> ri; /(ri) -^ r ; succ(ri) -* i ; +(i,rib) -^ i ; +(i,ri) -» i ; +(ri,i) -» i ; +(r,rib) -> r
etc... etc... . (intuitively, ri can be identified to {leal, inl} etc... .

Remark that the semantic of M is clear but not that one of M' . It is very usual to translate
some algorithm (or to compile some program) to get an efficient but "non-signifiant" algorithm.
Here, M' is very efficient in time but the number of rules can exponencialy increase for obvious
reasons. The complexity of the non-determinism reduction is coded in other usual problems, as
equivalence of two automata. Nevertheless, in usual cases, the number of rules does not increase a
lot. Furthermore, it is possible to use dynamic programming ä la Morris and Pratt to get linear
classes of algorithms (like for recognizion of a term or a subterm). Efficient algorithms are
designed using transitive closure, by a way closely related to congruence closures in graphs
[27 33].

An important toolbox is available; it links the algebraic point of view (i.e. the specification

{8/

point of view) and the algorithmic point of view. Roughly speaking, it generalizes the Kleene
theorem: - for any specification, compile the best algorithm". A lot of algebraic tools have been
studied. Some are usual from the categorical point of view but sophisticatedI transducer;, (a little
too much complicated!) have also been introduced to modelize compilation [18]. Most of them have
realistic algorithmics properties. ,

This was a very short sketch of the present situation. Using these tools, and tedious ana lys.s of
tree structures (as in formal language theory) we recently solved the following problems (stated
in F51 ri41 [23], [24], [31]):Decidability of the confluence of ground term rewriting systems
F91 Viol- Decidability of the fair termination of ground term rewriting systems [371;
^decidability of the stability of recognizability under saturated congruence [36]; Undec.dab.hty
of code problem for non-linear trees and other structures [1]; Decidability of equality of the
yields of rational infinite trees [8]; Undecidability of termination of a left-linear rewriting rule
fill We are designing a software (VALERIAAN, in Prolog [11] .[[13]) for theorem prov.ng
first and second order reachability problems [31], etc... in some classes of term equations and
rewriting We get an optimised compiler of term rewriting which solves first order reachability
in linear time. Roughly speaking, we use dynamic programming, generalizing the famous Morns
and Pratt pattern-matching algorithm.

An example of automata used to solve a problem.
The problem of decidability of the confluence of ground term rewriting systems was stated by

Huet. We solved it recently by the way sketched below.(see [9], [10])
Definition of the class G7T of ground tree transducers (gtt): let A = {(Lj,Rj)|0<i<n} a finite

set of pair of recognizable sets of trees. The corresponding gtt A is defined by
(u,v)e A iff there exists t(x1 xp) u1,...up, v1 vp such that, u=t(u1,...,up), v =

t(vi vp) and for all i (1<i<p) there exists (Ljj.Rjj) in A such that, ui e Ljj and vi 6 Rjj
1/ Using tree automata technics we prove that : (i) the inverse of a gtt is a gtt; (ii) the

composition of two gtt is a gtt; (Hi) the precongruence closure of the union of two gtt is a gtt;
(iv)the iteration of a gtt is a gtt.

21 Then it is obvious that the relation R associated to a ground term rewriting system R is a
gtt (is suffice to remark that a ground rewriting step is a gtt and use 1/)

3/ Ft is confluent iff R oR "1 C R "1ofl (obvious). We then can to code R onto a

recognizable tree langage and then reduce the confluence decision to the inclusion of recognizable

tree langagues. ♦ ♦

Furthermore, using this characterization of ground term rewriting systems, we get efficient
algorithms to solve reachability problems (see VALERIAAN). (Gallier & all. [29,30] recently
extended the method of matings due to Andrews to first order languages with equality; they proved
that the method of equational matings remains complete when used in conjunction with a restricted
kind of E-unification (rigid-unification) using ground rewriting).

Related works and further works: logic and automata.
One of the motivations of tree automata was decision problems of second-order logic. [34]

Recent and important works studied connection between logic and automata [6,35].
The general goal is to associate to a logical system a class of automata to get decision properties

on the underlying objects (finite or infinite words, trees, graphs)[28,29,30]. This way provides
very powerful results, which associate to logical specifications (which can be seen as a veryvery
hight level of specification) decision algorithms by the way of automata on different algebraic
structures. Unfortunately, the complexity of these algorithms is not realistic. An algebraic and
algorithmic study of automata on these structures could provide, at an intermediate level of
specification including heuristics, useful tools for an interactive design of efficient algorithms.

Our study of weighted graphs, which generalizes usual infinite rational trees and provide a tool
for decision and compexity analysis in Logic Programming, illustrates this way. The algebraic
structured can been drawn as following [7,15,16]:

usual directed graph weighted directed graph

<XP
unfolding unfolding

x-5

usual rational infinite tree generalized rational infinite tree

An other way is to extend recognizable sets of trees to recognizable sets of trees with some kind
of equality control between subterms [0,2,3]. For example, we considere automata rules which
check equalities of subterms [0]. We extend the classes but we keep good decision properties. The
results can be used for some decision problems in algebras containing terms with non linear
signature.

REFERENCES
[0] Bogaert, B. Tree automata with equality control. Technical report, to appear, LIFL,

University of Lille.
[1] Bossut, F., M. Dauchet & B. Warin, "Rationality and recognizability on planar directed acyclic

graphs". MFCS'88, Karlsbad, august 88, Lee. Notes Comp. Sei.
[2] Comon, H. "Inductive Proofs by Specification Transformations." Rewriting Technics and

Applications, Chapell Hill, North Carolina., april 1989, Lee. Notes Comp. Sei. (Dershowitz
ed.), to appear.

[3] Comon, H. Unification et desunification: theorie et application, these, Grenoble, 1988
[4] Courcelle, B. Equivalences and transformations of regular systems. Applications to recursive

program schemes and grammars, Theor. Comp. Sei. 42 (1986), 1-122.
[5] Courcelle, B. On recognizable sets and tree automata, Theor. Comp. Sei., to appear.
[6] Courcelle, B. Every equational graph is definiable in monadic second order logic, to appear.
[7] Dauchet.M., Devienne Ph.&Lebegue P. (1988). Decidability de la terminaison d'une regle de

reecriture en tete, Journäes AFCET-GROPLAN, Bigre+Globule 59, p. 231-237.
[8] Dauchet, M. & Timmerman, E„ Continuous monoids and yields of infinite trees, RAIRO Inform.

Thäor., 20-3 (1986), 251-274.
[9] Dauchet, M., T. Heuillard, P. Lescanne & S. Tison, Decidability of the Confluence of Ground

Term Rewriting Systems, 2nd Symposium on Logic in Computer Science, New-York, IEEE
Computer Society Press (1987), 353-360.

[10] Dauchet, M. & S. Tison, Decidability of confluence in ground term rewriting systems,
Fondations of Computation Theory '85, Cottbus, Lecture Notes Comp. Sei., 199 (1985),
80-84.

[11]Dauchet, M. & Deruyver, A. "VALERIAAN": Compilation of Ground Term Rewriting Systems
and Applications". Rewriting Technics and Applications, Chapell Hill, North Carolina., april
1989, Lee. Notes Comp. Sei. (Dershowitz ed.), to appear.

[12] Dauchet M. Simulation of Turing Machines by a left-linear rewrite rule. Rewriting
Technics and Applications, Chapell Hill, North Carolina., april 1989, Lee. Notes Comp. Sei.
(Dershowitz ed.), to appear.

[13] Deruyver, A., Gilleron, R., Compilation of term rewriting systems CAAP'89, Lee. Notes
Comp. Sei. (Diaz ed.), to appear.

[14] Dershowitz, N. (1987). Termination. J. Symbolic computation, 3 p.69-116.
[15] Devienne Ph. & Lebegue P. (1986). Weighted graphs, a tool for logic programming, CAAP

86, Nice, Springer Lee. notes Comp. Sei. 214, p.100-111.

/&3

T161 Devienne Ph. (1988). Weighted Graphs, a tool for expressing the Behaviour of Recursive
Rules in Logic Programming, in proceeding of FGCS1 88, Tokyo. 397-404. Extended paper to

appear in TCS.
[l7]Eilenberg S. & WreightJ. "Automata in General Algebras", Information and Control 11,

52-70(1967). . .
[18] Engelfriet, J. "Botiom-up and Top-down tree transformations, a companson,, Math.

Systems theory 9,198-231 (1975). _ , . .
[19]Fages, F. "Notes sur TUnification des Termes de Premier Ordre finis ou infinis , Technical

Report, INRIA (1986). . ,_ . .
[201Gailier J H., Raafe.S. & Snyder, W. Theorem Proving using Rigid E-Unification: Equational

Mating", 2nd Symposium on Logic in Computer Science, New-York, IEEE Computer Society

Press (1987), 338-346. .
[21]Gallier,J.H., Narendran, P., J.H., Raatz.S. & Snyder, W. "Theorem Proving Using Equational

Matings and Rigid E-Unification.", To appear.
[22]Gecseg.F. & Steinby, M. "Tree Automata", Akademiai Kiado, Budapest, (1984).
[23] Huet G & Oppen D. C. (1980). Equations and rewrite rules: A survey, in R. V. Book, ed.,

New York: Academic Press. Formal Language Theory: Perspectives and Open Problems, pp.

349-405. . „ „„
[24] Jouannaud, J. P. (1987). Editorial of J. Symbolic computation,*, p.2-3.
[25]Martelli, A. & Montanari, U. "An Efficient Unification Algorithm". TOPLAS 4(2), 258-282

M QQO)

[26] Mezei J., Wright., Algebraic automata and context-free sets, Information and Control 11
{1967} 3-29

[27]Nelson G & Oppen D.C. "Fast Decision Procedures Based on Congruence Closure". JACM 27(2)

[28] Nivat M., Perrin D. (eds.), Automata on infinite words, Lee. Notes Comp. Sei., 192,

[29] Nivat M.,' Perrin D. Ensembles reconnaissables de mots biinfinis, Canad. J. Math. 38,

513-537 (1986). t'
[30] Nivat M. Infinite words, infinite trees, infinite computations, in "Foundations of Computer

Science 111.2", (J.W. de Bakker, J. Van Leeuwen, Eds.), Math. Centre Tracts 109, 3-52.
[31] Oyamaguchi M. The reachability problem for quasi-ground .term rewriting systems,

Journal of Information Processing, 9-4, (1986)
[32] Plaisted, Semantic confluence tests and completion methods, Information and Control, 65,

182-215(1985) m x. „ . .
[331Snyder, E.W., "Efficient Ground Completion: an 0(n log n) Algorithm for generating Reduced

Sets of Ground Rewrite Rules Equivalent to a Set of Ground Equations." Rewriting Technics
and Applications, Chapell Hill, North Carolina., april 1989, Lee. Notes Comp. Sei.
(Dershowitz ed.), to appear. .

[34] Thatcher, J.W., Wright, J.B. Generalized finite automata with an application to a decision
problem of second-order logic, Math. Syst. Theory 2,57-82 (1968).

[35] Thomas W., Automata on infinite objects., Handbook of Theretical Computer Science, J.V.
Leeuwen editor, North-Holland, to appear.

[36] Tison S., J.L Coquide, M. Dauchet, about connections between syntactical and computational
complexity, to appear. .

[37] Tison S. The fair termination is decidable for ground systems, Rewriting Technics and
Applications, Chapell Hill, North Carolina., april 1989, Lee. Notes Comp. Sei. (Dershowitz

ed.), to appear.

iQH

Category-Sorted Algebra-Based Action Semantics

Susan Even and David Schmidt
Computing and Info. Sciences Dept.
Kansas State University
Manhattan, KS 66506 USA
schmidt@cis.ksu.edu

In a series of papers [5,6,7,8,14,15], Mosses and Watt define action semantics, a metalanguage for high level,
domain-independent formulation of denotational semantics definitions. Action semantics hides details about
domain structure (e.g., direct semantics domains vs. continuation semantics domains vs. resumption seman-
tics domains) and coercions (e.g., integers into reals, injections of summands into sum domains) to encourage
readability and modifiability. Action semantics notation is of interest as a programming language of itself,
for its components (called actions) are polymorphic operators that can be composed in three fundamental
ways.

We have formulated a model for action semantics based on Reynolds' category-sorted algebra [10,12].
In the model, actions are natural transformations, and the composition operators become compositions in a
weak "3-category"-like structure. We have used the model to prove the soundness and completeness of a
unification-based, decidable, type inference algorithm for action semantics expressions. The proof is notable
for its simplicity.

Action Semantics

Actions are combinators; they operate upon kinds. (Mosses calls them facets [5,7]). A kind is a collec-
tion of types; for example, the functional facet is the kind of all types that can be used as temporary values in
a computation. The types int, bool, real, boolxreal, and so on, belong to the functional facet (Other facets
include the declarative facet, which contains types of identifier, value binding, and the imperative facet,
which contains types of storage structure.) The types in a kind are pre-ordered to reflect subtyping relation-
ships [1,9,11].

Actions are polymorphic mappings on kinds. For example, the action copy is the identity mapping on
the types in the functional facet, and the action succ also maps functional facet values to functional facet
values: it increments int and real values, and it maps non-numbers to a nonsense value. Actions exist for all
the fundamental operations of programming languages: value passing, arithmetic, binding creation and
access, storage allocation and updating, and so on [5,7,8].

Actions can be composed. Arguments to a compound action may pass from one component action to
the other sequentially, in parallel, or conditionally. For example, the compound action copy; succ accepts a
functional facet value that is passed sequentially from copy to succ, and the output is the incremented value.
The action copy*succ accepts a value, which is given in parallel to both copy and succ. The two results—
the value and its successor— are merged together into a pair. Finally, copy I succ accepts a value, which is
conditionally given to one of the two actions, based on the typing of the value. The three compositions are
used to define derived compositions that describe value flows found in programming languages. For exam-
ple, * and ; are combined to describe the flows of bindings and storage, respectively, in command sequenc-

ing-
Coercions of arguments and results of actions occur implicitly and naturally (that is, the placement of

coercions does not affect the output of an action). For example, if an int argument is given to succ, but con-
text demands a real answer, an implicit coercion can occur either on the argument or on the answer and the

/85

result is the same in either case.
An action semantics may possess many kinds, and the kinds can themselves be preordered. The compo-

sition operators respect the subkinding.

Category-Sorted Algebra

Action semantics demands a model that supports the Scott-domain thoery upon which denotational
semantics is based. Scott-domains, subdomain relationships, and polymorphic operations are naturally
described within category-sorted algebra (csa) [10,12]. The appendix gives a precise definition of a csa; here
we supply an example of one in the form of a sample functional facet. Let {copy, succ} be a set of action
names and let A be the poset of type names:

ns

/\, real bool

int

Let Tcopy be the identity operation on the poset, and let Tsuce map int to int, real to real, and bool and ns to
ns. (Tcopy and Tsucc are the "typing functions" for actions copy and succ.) Now, (A, {Tcopy,Tsucc))formsa
single-sorted algebra (ssa); the ssa plus the operator set [copy, succ] form a signature for a csa.

The carrier of the csa is a functor F: A =>Pdom (Pdom is the category of predomains, i.e., "bottomless
epos") that maps int to Z, real to R, bool to B, and ns to 1 (the terminal object in Pdom). The functor inter-
prets the type names and the coercion mappings between them. The operators are interpreted as natural
transformations: the copy operator becomes the identity natural transformation in F -^ F ° Tcopy, and the succ
operator becomes a natural transformation in F-^ F ° Tsucc. The natural transformations respect the coercion
maps established by the carrier.

Other facets are defined similarly. Indeed, the complete structure of action semantics is defined as a csa
of a csa, where the first csa defines the facet hierarchy (of which the poset seen above is part), and the second,
many-sorted, csa defines the interpretation of the facets (of which the csa seen above is part).

The csa framework accommodates direct and continuation-style denotational semantics for actions. An
action like succ can be defined as a natural family of direct semantics functions in Expressible-
Value-* Expressible-Value or as a natural family of continuation semantics functions in (Expressible-
Value -» Answer) -» (Expressible-Value -> Answer).

Applications

Action semantics expressions are uncluttered by typing annotations; nonetheless, such annotations are
invaluable to analysis and implementation. We have defined a unification-based type inference algorithm
that annotates an action expression with a typing scheme that indicates its sensical behavior in its context of
use.

The algorithm assigns primitive type schemes to primitive actions. For example, the actions copy and
succ are given type schemes:

copy: 0 -»0
succ: 0->0 if Q<real

The second scheme says that succ has an answer type that matches its argument type if the argument type 0
satisfies the constraint Q<real [3,4].

A composed action expression has its type scheme inferred from the types of its components. For
actions:

/8fc

a\.<5\ ->Xi if C\
and

ö2:o2~*'t2 '/ Q
the algorithm infers:

(flX; a2): J/O! -> I/X2 1/ tf(Ci u C2)
where t/ is the most general unifier of X\ and a2. Other forms of composition are treated similarly.

Let action a have a typing function Ta in the csa interpretation. A typing scheme a:a-*x if C is
sound if, for all substitutions U such that Uo is a completely instantiated type name and U(C) is a set of com-
pletely instantiated constraints that hold true, Ta(Ua)=U%. The scheme is complete if, for all types /,
Ta(t)*ns implies there exists a substitution U such that Uo=t and U(Q is a completely instantiated set of
constraints that hold true.

We have proved the soundness and completeness of the type inference algorithm. No complex proof-
theoretic techniques are needed to establish the results, because the csa model provides simple, significant
information in the form of the Ta typing functions. Further, the model discourages formulation of a type
inference algorithm that attempts to insert explicit coercions. Since actions are natural transformations, coer-
cions are unnecessary; the actions must respect the subtyping ordering, whether coercions are used or not.
Finally, the inference algorithm is decidable, since natural transformations are "shallow universally
quantified" (like the polymorphic operators in ML). Thus, many of the sticky problems found in type infer-
ence for programming languages with polymorphism and subtyping are avoided by selection of the csa
model.

We have also implemented a prototype interpreter for action semantics along the lines of [14] but with a
more careful treatment of the facet flows to actions [2].

References

[1] Cardelli, L., and Wegner, P. On understanding types, data abstraction, and polymorphism. Computing
Surveys 17-4 (1985) 471-522.

[2] Even, S. An implementation of action semantics. M.S. report, Computer Science Dept., Iowa State
Univ., Ames, Iowa, 1987.

[3] Jategaonkar, L., and Mitchell, J. ML with extended pattern matching and subtypes. Proc. 1988 ACM
Conf. on LISP and Functional Programming, Snowbird, Utah, July 1988, pp. 198-211.

[4] Mitchell, J. Coercion and type inference. Proc. 11th ACM Symp. on Prin. of Prog. Lang., Salt Lake
City, Utah, 1984, pp. 175-186.

[5] Mosses, P. Abstract semantic algebras! In Formal Description of Programming Concepts II, D.
Bjoerner, ed., North-Holland, Amsterdam, 1983, pp. 45-72.

[6] . A basic abstract semantic algebra. In LNCS 173: Semantics of data types, Springer, Berlin, 1984,
pp. 87-108.

[7] . The modularity of action semantics. To appear in SDF Benchmark Series in Computational
Linguistics- Workshop II, MIT Press, Cambridge.

[8] . Unified algebras and action semantics. To appear in Proc. STACS89, Paderborn, Feb. 1989,
Springer LNCS.

[9] Oles, F. Type algebras, functor categories, and block structure. In Algebraic Methods in Semantics, M.
Nivat and J. Reynolds, eds. Cambridge Univ. Press, Cambridge, 1985.

tS7

[10] Reynolds, J. Using category theory to design implicit conversions and generic operators. In LNCS 94:
Semantics-Directed Compiler Generation, N. Jones, ed. Springer, 1980, pp. 211-258.

[11] . The essence of Algol. In Algorithmic Languages, J. deBakker and J.C. vanVliet, eds., Noth-
Holland, Amsterdam, 1981, pp. 345-372.

[12] . Semantics as a design tool. Course lecture notes, Computer Science Dept., Carnegie-Mellon
Univ., Pittsburgh, PA, 1988.

[13] Stansifer, R. Type inference with subtypes. Proc. 15th ACM Symp. on Prin. of Prog. Lang., San
Diego, CA, 1988, pp. 88-97.

[14] Watt, D. Executable semantic descriptions. Software: Practice and Experience, 16 (1986) 13-43.

[15] . An action semantics of standard ML. In LNCS 298: Mathematical Foundations of Programming
Semantics, M. Main, et. al., eds., Springer, Berlin, 1987, pp. 572-598.

Appendix

The notation and definitions are from [12]. Let S=(Ob(S),Mor(S), «) bea category; assume that S has
finite products.

Definition: An Q.-signature is a pair (Q, ar), where Q is a set of operators, and or. Q.^>N is a function
that gives the arity of the operators.

Definition: A (single-sorted) Sl-algebra (based on S) is a pair A = (IAI, {Aa I coe ß}), where
IAI e Ob(S) is the carrier of the algebra, and for each coe fl, operation A^: IAIar(0 -> IAI is in Mor(S).

Definition: An Q.-T signature is a triple (Q, ar, T), where Q. and ar are defined as above, and T is an Q-
algebra based on PreO. (PreO is the category of preordered sets and monotone mappings.)

Definition: An Cl-T category-sorted algebra (based on S) is a pair A = (IAI, {Am I coe Q}), where
IAI: I T\ =$S, the carrier of A, is a functor from I T\, treated as a category in the usual way, to category

S; and for each coe fi, operationAo,: IAIar£0-^ IAI »70 is anatural transformation, where rw is treated
as an endoftmctor on I T\.

The above definitions easily generalize to many-sorted algebras and category many-sorted algebras.

198

THE DE BRUDN ALGEBRA

Didier VIDAL

C.R.I.N. and L.I.F.L.*

e-mail: dvidal@frcitl71.bitnet

ABSTRACT : The substitution process of de Bruijn calculus is analysed with an equationnal theory,

called the "de Bruijn Algebra*. Two optimisations are described by equations, which can be oriented into

term rewriting systems: parallel substitution and a "labelled" substitution delaying the recoding of the

argument free variables.

KEYWORDS : A-calculus, de Bruijn calculus, substitution, algebra, equational theory, term rewriting

system.

Introduction

Implementations of functional languages rely on A-calculus as a firm mathematical ground. Lambek [3]
showed a close relation between typed A-calculus and Cartesian Closed Categories {CCC in the sequel),
and later, Curien [2] used Lambek's formalism to show, that A-terms in de Bruijn's notation [1] could
be translated into CCC-terms. This approach led to an efficient implementation of the language ML,
(originally developped at the University of Edinburgh). The Categorical Abstract Machine — on which this
implementation is based — performs weak reductions and takes advantage of the pairing of functions and of

the polymorphism of the "categorical combinators".

In [4], we have studied an implementation of a functional language based on strong reduction: programs are
untyped A-terms internally coded with de Bruijn's notation, and its semantics is given by the head normal

form.
In A-calculus theory, substitution is treated as a one-step process, and this is unsuitable for practical imple-
mentations. This remark led us to study substitution more carefully. We have derived various substitution

algorithms from our algebraic approach which formalize this process and improve it.

We shall introduce an abstract algebra, that we have called the "de Bruijn Algebra" — dB A for short —
which is directly inspired by CCC and Curien's work. This algebra defines an equational theory where the
substitution process is entirely decomposed and simu/atedby its axioms. Moreover, we shall not be restricted
by typed terms: we can forget about typed theory, and formal computations in dB A will serve the untyped

A-calculus theory as well.

* C.R.I.N. UA CNRS 262, BP 239, F-54506 VANDCEUVRE CEDEX, and L.I.F.L. UA CNRS 369, UFR d'I.E.E.A.

Bät.M3. F-59655 VILLENEUVE D'ASQ CEDEX

/&<*

Definition

We give the "strong rules system» of [2] (p.10) with our notations (and name). Then, the standard substi-
tution algorithm in de Bruijn's notation is recalled.

The de Bruijn Algebra is defined as follows:

0-arity operators (i.e. constants): x, x*, id,

unary operators: A., # and +,
binary operators : • (this dot will in fact be ommitted) and o.

If / € dB A, the results of each of the three unary operators are respectively noted: (A./), f* and /+.

With these notations, the axioms of dB A are:

(1) (A./)j = /oj/#
(2) (/OJ)OA = /O(JOA)

(3) (A./)off = A.(/o«,+)
(4) {fg)oh = (foh)(goh)
(5) TO/+ = /O*

(6) Ttof+ = x'
(7) xof* = id
(8) r'of*=f
(9) idof = f
(10) foid=f

Some intuitive feeling can be caught from CCC : each of these axioms are indeed simple theorems of
CCC theory, o is borrowed from the composition of arrows, id comes from the identity arrow, x and
x* correspond respectively to the first and second projections of cartesian categories. If f:Ax - A2, then
/+^xS-A2xS is (/ox, x>) , and f*:Ax ^i x A2 is (idAl, f). In a cartesian closed category, we
have two maps App: (*') x A - B and A, (A x B - C) - {A - C*), such that, for any /: A x Br - C
A./ is the unique map satisfying Appo (A./)+ = /. Now, if /* is defined as Appo(f,g) (1), (3) and
(4) above are easy consequences of these definitions. For example, let's first notice that f+ o g* _ {J,g)
and /+ o g+ = (/ o <,)+ in any CCC, then fog* = Appo (A./)+ o ff# = Xpp o (A./,«/) = (A./)*, and
/o<,+ = ^ppo(A./)+oJ7+ = APPo((A./)off)

+ =* (A./)oj = A.(/o«,+),byunicity.

REMARK: In dB A we could not, for example, deduce (4) from the other axioms, contrasting with the proof
in a cartesian closed category using uniqueness of (f,g) = A such that x o h = f and x* o h - $. The
same is true for (3), which must be taken here as an axiom. Our equational theory is weaker than CCC
theory (which is of course not equational) but strong enough for A-calculus purpose, as we shall see shortly.
Moreover, we have eliminated all couples explicitly since they are not present either in A-calculus.

When the integer-coded bound variable n is interpreted by/ofo-oi (with n copies of x), as in [2],
a A-term in de Bruijn's notation corresponds, without changing its syntax, to an element in dB A. The
image of A-terms in dB A by this injective morphism will be noted dB. For the next two lemmas, we shall

introduce some more notations :

NOTATIONS: (i) (/#)+ = f*+, (/+)+ = /++ etc. and /#+■"+ = /«, if there are k copies of + (

particular fW=f*)-
(if) (x*)+'"+ = x** {k copies of +).

IHO

in

LEMMA. With the preceding notations, for all k>Q and n > 0, we have :

{H if n < k,
/OT» if n = k,
n-1 if n>k.

LEMMA. For any / € dB and any integer d>0, the term fo*d can be reduced to a term g € dB by the

following rules:

(A./)ox^=A.(/oxW),
(flf2)0Xd>k = {fl0**>'<){f20*i<>'),

ik in. ifn<k,
°' -\n±d ifn>k.

It is easüy checked that, for any / 6 dB, the new terra produced by the reduction of /o *" is identical to
/ except for the free variabies which are all recoded by increasing their code by n.

By definition, substitution of a dB-term g in an other dB-term f consists in reducing f o g*.

We have the following main result:

THEOREM. If M and N are two A-terms, and M and N their respective counterparts in dB A, then:

dB A r-M = N <=» \r-M = N

Substitution improved

We shall show how to prove the correctness of two optimisations of the standard substitution algorithm with
the help of dB A. In fact, from equalities in dB A, we get the recursive algorithms we are looking for.

1 — Parallel substitution

We want to get here an algorithm for parallel substitution.

NOTATIONS: for k > 0, let g W = g[f+k~l] o • • • o $].

LEMMA, (i) {\l.f)gig-i•■•gt = f°g[0].

(HJ (A./)o*M«A.(/oyl*+i])f

(Hi) (/1/2) o9W = (A ° 9[k])(h o gW),
{n if n< k,

gi-n+k o 3rfc if k < n < k + £,
n-l ifn>k + L

(i) shows what we want to compute and is easily checked, (ii), (iii) and (iv) give a deterministic algorithm,
when interpreted by rewrite rules (orienting equalities from left to right) on dB : only one of the three rules
can be applied to a given dB-teim, depending on its structure (i.e abstraction, application, or variable).

(<\

2 — Labelled substitution

Our aim is to delay the recoding of the free variables of a substituted argument (this recoding is necessary
in the standard algorithm), so that sharing can be acheived.

We are going to define substitution on a larger subset of dB A than dB. Indeed, "<fS-terms not yet recoded"
are of the form fox4, with / € dB and d > 0. These terms will be called "labelled terms" and the subset
of dB A they form will be noted IdB. In dB, redexes are simply (X.f)g, now we have to consider also those
of the form ((A./) o xd)g. The new substitution will perform at the same time the recoding of (A./) and
the substitution of the argument g. Moreover, recoding of g will not be computed, but delayed.

NOTATIONS: (t) (xd)+ og*= gW ,

(it) gWk ss j(d)+"+ if there are k copies of +.

LEMMA, (i) ((A./)oxd)gs/oj»,

(ü) (AA)OF»* = ifxo*M*)(A o,M»),
(Hi) (A./)o,M*«A.(/o,M<*+»))>

if n<k,
(iv) no jM* =lgovn ifn = k,

■ ifn>k, [n+d-1

, , -* Ml* fjl^l-^o/ f/^<Jb,

Again, from these equalities converted into a term rewriting system on IdB, we get a substitution algorithm
on labelled terms. The last case (v) shows how to deal with substitution into a labelled term, say / o x :
if the label d> is greater than the depth ib where g is to be substituted, it is clear that there will be no free
variable with a code equal to k and consequently no occurrence where to substitute g, hence, in that case,
we get a simple result viz. xiJfi!"x (as it can be checked).

REMARK: The two algorithms could be mixed to produce a "parallel and labelled" substitution (see [4]).

Conclusion

We have presented an abstract algebra, the de Bruijn Algebra, which contains the set of A-terms in de
Bruijn's notation, and also other interesting terms like the so-called "labelled (de Bruijn) terms". The sub-
stitution process can be investigated in great details with this algrebraic approach. We have indicated how
various substitution algorithms can be deduced from the standard one and how to improve it. Other results
converging to an efficient implementation of A-calculus can be found in [4]. They are based on the notion
of re/ocaJisation of redexes, which allows to interpret the integer codes of the variables as offset-addresses in
a stack of arguments and prove the correctness of abstract machines.

Finally, let's mention that if one is interested by »/-reduction, the foUowing axiom would have to be consid-

ered : A.(/ o *-)x' = /.

112-

References

[1] de Bruyn, N.G., Lambda. Calculus Notation with Nameless Dummies, a Tool for Automatic Formula
Manipulation, with Application to the Church-Rosser Theorem, Indag. Math. 34, pp 381-392, 1972.

[2] Curien P-L., Categorical Combinators, Sequential Algorithms and Functional Programming, Research
Notes in Theoretical Computer Science, Pitman, London, 1986.

[3] Lambek J., From X-calculus to Cartesian Closed Categories, in "To H.B. Curry: Essays on Combinatory
Logic, Lambda-calculus and Formalism", ed J.P. Seldin and J.R Hindley, Academic Press (1980).

[4] Vidal D., Nouvelles notions de reduction en X-calcul, These de Doctorat de l'Universite de Nancy, 1989.

H3

A Game Characterization of the Observational Equivalence of Processes
(Extended Abstract)

M. Haut Oguztuzun
Department of Computer Science

University of Iowa
Iowa City, IA 52242

This preliminary work is concerned with the characterization of the observational equiv-
alence of processes in model-theoretic terms. First, the Ehrenfeucht game is extended by
introducing a condition of "compatibility", and then it is shown that the equivalence in-
duced by the extended game with an appropriate notion of compatibility coincides with
observational equivalence. Second, a subclass of first-order languages is defined by "trans-
lating" this specific compatibility notion into a syntactical constraint. It is conjectured that
the language thus obtained corresponds to the extended game in the sense that a first-order
language corresponds to the original game.

The Ehrenfeucht game is played by two players, Player I and Player n, given two similar
(relational) structures, A=<A,{Ri\i €l} > and B=<B,{S,|» el} > where I is some index
set. With A [resp.B] we associate a reflexive relation, C>» [resp.Ca] on A [resp.B]. We
call them the compatibility relations. Let n be a fixed natural number. We then denote
the extended Ehrenfeucht game by Gn(A,CAyB}Cß). A play of this game consists of n
rounds, each of which is played as follows. First, Player I chooses an element of either
A or B. In response, Player II picks an element of the other structure. Each element
must be "compatible" with the element chosen from that set at the previous round. More
precisely, let a be the element of A [or B] chosen at round t. In the next round, for any
player to choose an element c,+i of A [resp.B], CiC^Ci+i [resp.c,Csc,+i] must hold. At the
end of the play, we have < ai,...,an >, the sequence of elements chosen from A, and
< 61,..., 6„ >, the sequence of elements chosen from B. Player II wins the play of the game
iff the correspondence between 04 and 6,- (1 = 1,..., n) is an isomorphism with respect to
the relations of A and B. Otherwise Player I wins.

We define a relation on similar structures by Player II having a winning strategy. This
turns out to be an equivalence relation. More precisely, let A and B be two similar structures.
We say that A is Gn-equivalent to B (w.r.t. C* and CB) iff Player II has a winning strategy
in the game Gn(A,Cji,Bfiß). We say that A is G-equivalent to B iff A is Gn-equivalent to
B for all n (given C* and CB).

We model a process as a synchronization tree (st). An st is a rooted, unordered, la-
belled, finitely-branching tree [4]. We can view an st as the unfolding of a nondeterministic
state transition system with "silent" moves. Formally, we represent an st A as a structure
A=<A,{ÄM||* € A; r}, OQ >,where A is a countable set (of nodes, or states), A is a finite set
(of labels) and r fi A, ÄM (/i € A; r) are binary relations on A (arcs, or transitions), and
OQ €A (the root, or initial state). (Notation: A;r = AU {r}.) The silent transition R? has
to be reflexive. So we have a self-loop labelled r at each node.

We define the observational equivalence on sts (denoted «) as follows.
Let two ate A and B be given as above. Then, let =>M be the closure of Rß under left and
right relational compositions with £,., for p 6 A;r. We identify an st with its root. Now
the definition:

(95

A »o B. A «jfe+i B iff
(i) A=*-ßA' implies B=>,lB' and A'wfcB' for some B*; and
(ii) B^B? implies A=^ßA' and A'fUkB1 for some A'.
A»B iff for all k A&kB.

Given two sfe A and B, we consider the game Gn(A,^A,B,^B) where
^=<A,{=*M |/i € A;r} > where =»" is denned as above (M € A;r), and the compatibility
relation **A is defined as U^gA.r =>M. Similarly, we define S and ~>B for B.

Theorem: Given two synchronization trees A and B. A « B iff the structures A and B
defined above are G-equivalent (w.r.t. **A and ~*B)-

Now, consider a first-order language £ with a finite number of two-place predicate sym-
bols and a constant symbol, without equality. The predicate symbols are to be interpreted
as relations =>" (/i € A;r), and the constant symbol is to be interpreted as the root. Let
<p be a formula of L which is not tautologically false. Consider a formula <p' of I which is
logically equivalent to <p and in the prenex-disjunctive normal form. Let ^ be a disjunct of
the matrix of <p'. Define a relation >^ on the set of variables and the constant symbol as
follows: x >^ y iff rff has an atomic formula Pxy or the negation of it as a conjunct. If >^
is merge-free for every disjunct 0 of the matrix then we call <p special U <p is tautologically
false then we take it as special. (We call a binary relation R merge-free iff xRz and yRz
implies x = y.) The subset C* of t is defined so that the formulas of £. are exactly the
special formulas of Z. We say that two structures A and B are elementarily equivalent w.r.t.
t* iff for any closed formula a of £,, A satisfies a iff B satisfies <r.

Conjecture: Let A and 8 be two similar structures having a finite number of binary
relations. Let their respective compatibility relations, ~^ and ^s be defined as above. A
and B are G-equivalent iff they are elementarily equivalent w.r.t. £*.

Related Work: The idea of observational equivalence is prevalent in Milner's work on the
Calculus of Communicating Systems, see, e.g. [4,5]. The definition we adopt here is called
the "weak observational equivalence" in [1]. This reference is a comparative study of several
operational and logical notions of process equivalence. Hennessy and Milner [3] proposed
a modal language to characterize observational equivalence. The game characterization of
the elementary equivalence of similar finitary structures is due to Ehrenfeucht [2].

Acknowledgements
The help received from George Nelson was indispensible. Discussions with M.N. Muralid-
haran led to improvements on several points. Thanks are also due to Teo Rus for his
encouragement.

References
[1] Brookes,S.D. and Rounds,W.C. Behavioral equivalence relations induced by program-
ming logics. In Proc.ICALP 8S,LNCS 154,Springer-Verlag,Berlin,1983, 97-108.
[2] Ehrenfeucht,A. An application of games to the completeness problem for formalized
theories. Fundamenta MathematicaeJLLJX (196l),129-141.
[3] Hennessy,M. and Milner,R. Algebraic laws for nondeterminism and concurrency. Journal
of the ACM 32,1 (January 1985),137-161.
[4] Milner,R. A Calculus of Communicating Systems. LNCS 92, Springer-Verlag,Berlin,1980.
[5] Milner,R. Lectures on a calculus for communicating systems. In Proc. Seminar on
Concurrency,July 1984,LNCS 197,Springer-Verlag, Berlin,1985,197-220.

/ft

Refinement in branching time semantics

Rob J. van Glabbeek and W.Peter Weijland
Centra for Mathematics and Computer Science

P.O.Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract: In this paper we consider branching time semantics for finite sequential processes
with silent moves. We show that Miner's notion of observation equivalence is not preserved
under refinement of actions, even when no interleaving operators are considered; however,
the authors' notion of branching bisimulation is.

Note: This paper is sponsored in part by Esprit prefect no.432, METEOR.

INTRODUCTION
'virtually all semantic equivalences employed in theories of concurrency are defined in terms of actions that
concurrent systems may perform (cf. [1-7]). Mostly, these actions are taken to be atomic, meaning that
they are considered not to be divisible into smaller parts. In this case, the defined equivalences are said to
be based on action atomicity.
However, in the top-down design of distributed systems it might be fruitful to model processes at different
levels of abstraction. The actions on an abstract level then turn out to represent complex processes on a
more concrete level. This methodology does not seem compatible with non-divisibility of actions and for
this reason, PRATT [7], LAMPORT [4] and others plead for the use of semantic equivalences that are not
based on action atomicity.
As indicated in CASTELLANO, DE MICHEUS & POMELLO [2], the concept of action atomicity can be
formalised by means of the notion of refinement of actions. A semantic equivalence is preserved under
action refinement if two equivalent processes remain equivalent after replacing all occurrences of an atomic
action a by a more complicated process r(a). In particular, r(a) may be a sequence of two actions ai
and a2. An equivalence is strictly based on action atomicity if it is not preserved under action refinement
In a previous paper [3] the authors argued that MiLNER's notion of observation equivalence [5] does not
respect the branching structure of processes, and proposed the finer notion of branching bisimulation
equivalence which does. In this paper we moreover find, that observation equivalence is not preserved
under action refinement, whereas branching bisimulation equivalence is.

1. PROCESS GRAPHS

As a simple model, let us represent a process by a state transition diagram or process graph. Such a graph
has a node for every one of the possible states of the process, and has arrows between nodes to indicate
whether or not a state is accessible from another. Furthermore, these arrows (directed edges) are labelled,
with labels from Au{x}, where A = {a,b,c,...} is some set of observable signals, and i stands for a silent
step (cf. [5]).

<M

DEFINITION l.i A process graph is a connected, rooted, edge-labelled and directed graph.

In an edge-labelled graph, one can have more than one edge between two nodes as long as they carry
different labels. A rooted graph has one special node which is indicated as the root node. Graphs need not
be finite, but in a connected graph one must be able to reach every node from the root node by following a
finite path. If r and s are nodes in a graph, then r->as denotes an edge from r to s with label a (it is
also used as a proposition stating that such an edge exists). In this paper we limit ourselves to processes
represented by finite, non-trivial process graphs. A graph is finite if it is acyclic and contains only finitely
many nodes and edges; it is trivial if it contains no edges at all. The set of non-trivial, finite process graphs

will be denoted by G.
In order to turn G into an algebraic structure, it is possible to define binary operators '+' and '•' for
alternative and sequential composition. For any two graphs g and h the process graph (g + h) is
obtained by simply identifying their root nodes, whereas (g-h) -often written as just (gh) - can be found
by identifying the root node of h with all endnodes of g. Furthermore, constants from Au{x} are
interpreted as one-edge graphs, carrying the constant as their edge-label. The algebraic structure allows us
to study equational theories that emerge from any defined equivalence on G. For instance, in branching
time semantics, one often considers observation congruence (cf. MILNER [5]) - written as =c - as a
deciding criterion for equality in observable behaviour. Let us write r => r1 for a path from r to r"
consisting of an arbitrary number (£0) of x-edges. Then its definition can be rephrased as:

DEFINITION 1.2 Two graphs g and h are observation equivalent if there exists a symmetric relation
R £ nodes(g)xnodes(h) u nodes(h)xnodes(g) (called a x-bisimulatiori) such that
1. The roots are related by R.
2. IfR(r,s)and r-^r* (a€Au{x}), then either a=x and R(r\s), or there exists a path

s => si ->a S2 =» s' such that Rtf.s').
Furthermore, g and h are observation congruent if we also have that
3. (root condition) Root nodes are related with root nodes only.

The root condition was first formulated by BERGSTRA & KLOP [1], and serves to turn the notion of
observation equivalence into a congruence with respect to the operators + and •. It can be proved that
observation equivalence and observation congruence are equivalence relations on G, and that the latter is
the coarsest congruence contained in the former (cf. [5,1,3]). It was shown in [1] that with respect to
closed terms the model G/«0 is completely axiomatized by the theory

x + y = y + x Al XT = X Tl
x + (y + z) = (x + y) + z A2 TX = TX + X T2

x + x = x A3 a(xx + y) = a(xx + y) + ax T3

x(yz) = (xy)z A4
(x + y)z = xy + xz A5 (a€Au{x})

The x-laws T1-T3 originate from MILNER [5], who gave a complete axiomatization for a similar model
with prefixing instead of general sequential composition. From these axioms, it is easy to show why the

118

notion of observation congruence is not preserved under refinement of actions: replacing the action a by
the term be, we obtain bc(xx + y) = bc(xx + y) + bcx from T3, which obviously is not valid in G/«0. By
T3, we do find bc(xx + y) = b(c(tx + y) + ex) which unfortunately denotes a different process.
Apart from the problem with refinement, it was observed in VAN GLABBEEK & WEIJLAND [3] that
observation equivalence does not strictly preserve the branching structure of processes. This is because an
important feature of a bisimulation (cf. PARK [6]) is missing for t-bisimulation, which is the property that
any computation in the one process corresponds to a computation in the other, in such a way that all
intermediate states of these computations correspond as well. However, in observation congruence, when
satisfying the second requirement of definition 1.2 one may execute arbitrarily many x-steps in a graph
without worrying about the status of the nodes that are passed in the meantime.
In order to overcome this problem, in [3] a different notion was introduced, which yields a finer
equivalence on graphs.

DEFINITION 1.3 Two graphs g and h are branching equivalent if there exists a symmetric relation
R c nodes(g)xnodes(h) u node(h)xnodes(g) (called a branching bisimulation) such that:
1. The roots are related by R
2. IfR(r,s)and T-**f (aeAu{t}), then either a=x and R(r*,s), or there exists a path

s => si -»a s' such that R(r,si) and RCr'.s').
Furthermore, g and h are branching congruent if we also have that
3. (root condition) Root nodes are related with root nodes only.

Let us write R: g tab h if R is a branching bisimulation between g and h and R: g ö* h if, in addition, R
satisfies the root condition. One can prove that the same equivalence is defined when in definition 1.3 all
intermediate nodes in s => si are required to be related with r. Furthermore, observe that a branching
bisimulation can also be defined as in definition 1.2, with as extra requirements that R(r,si) and R(r*,S2).
It can be proved that branching equivalence and branching congruence are equivalence relations on G.
Furthermore, the latter is the coarsest congruence contained in the former. It was shown in [3] that with
respect to closed terms, the model G/±±ib is completely axiomatized by the axioms A1-A5 together with

XT = X Bl
x(t(y + z) + y) = x(y + z) B2.

Note that the axioms B1-B2 when applied from left to right only eliminate occurrences of x's. Using this
property, it can be shown that the associated term rewriting system on G/SAI-A5» i-e- G modulo equality
induced by the axioms A1-A5, is confluent and terminating. So any two closed branching congruent terms
can be reduced to the same normal form.

2. REFINEMENT
In this section we will prove that branching congruence is preserved under refinement of actions, and so it
allows us to look at actions as abstractions of much larger structures. Consider the following definitions.

<<n

DEFINITION 2.1 (substitution)

Let n A -»G be a mapping from observable actions to graphs, and suppose geG. Then, the graph

r(g) can be found as follows.
For every edge r-^r" (aeA)in g, take a copy jial of r(a) (s G). Next, identify r with the root
node of rial, and r* with all endnodes of r£ai. and remove the edge r ->a f.

Note that in this definition it is never needed to identify r and r\ since graphs from G are non-trivial.
This way, the mapping r is defined on the domain G. Note that since x« A, x-edges cannot be substituted
by graphs. Finally, observe that every node in g is a node in r(g).

DEFINITION 22 (preservation under refinement of actions)

An equivalence = on G is said to be preserved under refinement of actions if for every mapping

n A-> G, we have: g*h => r(g)»r(h).

In other words, an equivalence =» is preserved under refinement if it is a congruence with respect to every

substitution operator r.
Starting from a relation R: g t±rb h, we construct a branching bisimulation relation r(R): r(g) t±rb r(h),
proving that preserving branching congruence, every edge with a label from A can be replaced by a graph.

DEFINITION 2.3 Let r. A -» G be a mapping from observable actions to graphs, gji€ G and R: g ±*rb h.
Now r(R) is the smallest relation between nodes of r(g) and r(h), such that:

1. RcrCR).
2. If r-»ar* and s-»as' (as A) are edges in g and h such that R(r,s) and R(r\s'), and both edges

are replaced by copies jlal and ÄÜJ of r(a) respectively, then nodes from rXai and r^ä) are
related by r(R), only if they are copies of the same node in r(a).

Edges r ->a r* and s -»a s' (as A) such that R(r,s) and R(r\s'), will be called related by R, as well as the
copies rial and r(a) that are substituted for them. Observe, that on nodes from g and h the relation
r(R) is equal to R. Note that if r(R)(r,s), then r is a node in g iff s is a node in h.

THEOREM (refinement)

Branching congruence is preserved under refinement of actions.

PROOF We prove that R: garbh => rtR): r(g) arb r(h) by checking the requirements.
1. The root nodes of r(g) and r(h) are related by r(R).
2. Assume r(R)(r,s) and in r(g) there is an edge r -»a r*. Then there are two possibilities (similarly in
case r-^r* stems from r(h)):
(i) The nodes r and s originate from g and h. Then R(r,s), and by the construction of r(g) we find
that either a=x and r ->T r" was already an edge in g, or g has an edge r -»b r* and r ->a r1 is a
copy of an initial edge from r(b). In the first case it follows from R: g örb h that either R(r\s) - hence
r(R)(r\s) - or in h there is a path s => si ->T s' such that R(r,si) and RCr'.s'). By definition, the same

200

path also exists in r(h), and we have r(R)(r,si) and r(R)(r\s'). In the second case there must be a path
s => si ->b s* in h such that R(r,si) and R(r*,s*). Then, in r(h) we find a path s => si -»a s' (by
replacing ->b by r(b)) such that r(RXr,si) and rCR)(r\s').
(ii) The nodes r and s originate from related copies iflü and r(bj of a substituted graph r(b) (for
some be A), and are no copies of root or endnodes in r(b). Then r ->a r* is an edge in rjQjl. From
r(R)(r,s) we find that r and s are copies of the same node from r(b). So, there is an edge s-»as' in
r(bj where s* is a copy of the node in r(b), corresponding with r\ Clearly r(R)(r,,s').
3. Since for nodes from g and h we have r(R)(r,s) iff R(r,s), the root condition is satisfied. D

With respect to closed terms, the refinement theorem can be proved much easier by syntactic analysis of
proofs, instead of working with equivalences between graphs. For observe that the axioms A1-A5 + Bl-
B2, that form a complete axiomatization of branching congruence for closed terms, do not contain any
occurrences of (atomic) actions from A. Now assume we have a proof of some equality s=t between
closed terms, then this proof consists of a sequence of applications of axioms from A1-A5 +
B1-B2. Since all these axioms are universal equations without actions from A, the actions from s and t
can be replaced by general variables, and the proof will still hold. Hence, every equation is an instance of a
universal equation without any actions. Immediately we find that we can substitute arbitrary closed terms
for these variables, obtaining refinement for closed terms.
Nevertheless, the semantic proof of the refinement theorem is important as one may wish to generalize the
result to models of larger graphs than just finite ones from G.

REFERENCES
[1] J.A.BERGSTRA & J.W.KLOP, Algebra of communicating processes with abstraction, TCS 37 (1),

pp.77-121, 1985.
[2] L.CASTELLANO, G.DE MICHEUS & L.POMELLO, Concurrency vs Interleaving: an instructive

example, Bulletin of the EATCS 31, pp.12-15,1987.
[3] RJ.VAN GLABBEEK & WP.WEDLAND, Branching time and abstraction in bisimulation semantics

(extended abstract), Report CS-R8911, Centrum voor Wiskunde en hiformatica, Amsterdam
1989, to appear in: proc. IFTP 11th World Computer Congress, San Francisco 1989.

[4] LlAMPORT, On interprocess communication. Part 1: Basic formalism, Distributed Computing 1
(2), pp.77-85, 1986.

[5] R.MILNER, A calculus of communicating systems, Springer LNCS 92,1980.
[6] D.PARK, Concurrency and automata on infinite sequences, proc. 5th GI conf. on Th. Comp. Sei.

(PDeussen ed.), Springer LNCS 104, pp.167-183,1981.
[7] V.R.PRATT, Modelling concurrency with partial orders, International Journal of Parallel

Programming 15 (1), pp.33-71,1986.

20j

Dialectical Program Semantics

tea\ivToi/o{ ap/ioi/tt) • ita\ti/Tpono$ appovit)

Robert E. Kent

Introduction

Dynamic logic [Kozen] seeks to bring dynamic notions into logic and program semantics by basing this se-
mantics and logic on the notion of "predicate transformer". The alternate program semantics of Hoare-style
"precondition/postcondition assertions" is usually viewed as a special case of dynamic logic. Dialectical
logic [Kent] seeks to bring dynamic notions into logic by basing logic (Lawverel on the notion of "dialectical
contradiction" or, adjoint pair. How do these three logics connect together? This paper will show that
dynamic logic and Hoare-style precondition/postcondition assertional semantics are exactly equivalent, and
that dialectical logic subsumes both in the sense that "dynamic logic is the standard aspect of dialectical
logic". More particularly, I show in this paper that the axioms of dynamic logic (or alternatively, precon-
dition/postcondition assertional axioms) characterize precisely the dialectical logic notion of dialectical flow
category (or alternatively, assertional category, a notion related but not equivalent to Manes's assertional
category [Manes]). A dialectical flow category is a kind of indexed adjointness or dialectical base which itself
is a dialectical enrichment of the notion of indexed preorder [Hyland]. In fact, a dialectical flow category is an
indexed adjointness of subtypes which is locally cartesian closed. The indexing category here is the enriched
notion of a join bisemilattice [Kentj. Dialectical flow categories objectivize the intuitive idea of predicate
transformation or the "dialectical flow of predicates".

Assertional and Flow Categories

In this section we discuss the semantic structures appropriate for dialectical program semantics. The natural
axiomatization indicated by these semantic structures, which is an alternate axiomatization of dynamic logic
and expressed principally in terms of adjunctions, will be given in the full paper.

A biposet is another name for an ordered category; that is, a category P = (P, <, ®,Id) whose homsets
are posets under term entailment < and whose composition <8> called tensor product is monotonic on left
and right. We prefer to view biposets as vertical structures, preorders with a tensor product, rather than
as horizontal structures, ordered categories. The structural aspect of the semantics of dialectical logic is
defined in terms of bisemilattices. A join bisemilattice or »emiexact biposet P = ((P, ^,®,ld),@,0) is a
biposet whose homsets are finitely complete join-semilattices with j'otn terms *©r and bottom term 0y,a and
whose composition (tensor product) is finitely join-continuous. P-objects are called types and P-arrows are
called terms. Any distributive lattice is a one-object join bisemilattice, where tensor product coincides with
lattice meet »®r = Mr. A morpkism of join bisemilattices P -+ Q is a functor which preserves homset
order and finite homset joins. A complete Heyting category, abbreviated cHc, is the same as a complete join

203

bisemilattice; that is, a join bisemilattice H whose homsets are complete join semilattices (arbitrary joins

exist) and whose tensor product is join continuous (completely distributive w.r.t. joins). Since the homset

Hf*, *1 is a complete lattice, and left tensor product r® is continuous, it has (and determines) a right adjoint

r ® * ■<»,» * iff * 1»,> rA* caUed lefi tenaor implication. Similarly, the right tensor product ®r has (and
determines) a right adjoint t ® r <„ # iff* <,., *h «Hed right tensor implication. The category Rel
(also denoted Mfh) of sets and binary relations (multivalued functions) is a cHc. Given an alphabet A,

the category of formal ^-languages P{A*) is a one-object cHc (complete Heyting monoid), whose terms are

formal languages, whose tensor product is language concatenation, and whose identity is singleton empty

string {s}. More generally, every biposet P has an associated closure subset category P(P) which is a cHc:

objects are P-types, arrows are subsets of P-terms y -5- x when R C P[y,x], and homset order is the closed-

below order S < R when S C 1(A). Since every category C is a biposet with the identity order on homsets,

the subset construction P(C) is a special case of the closure subset construction.
For any type x in a join bisemilattice P a comonoid u at x, denoted by u:x, is an endoterm x - x

which satisfies "coreflexivity" u <,,, x, stating that u is a "subpart" of the type (identity term) x, and

«cotransitivity» u «a* u ® u. Since u ® u < x ® u = u, we can replace the «transitivity condition with

the equality u ® u = u, which states that « is an "idempotent" term at type x. Comonoids are generalized

subtypes. Comonoids of type x are ordered by entailment <£<.+. The bottom endoterm 0, = 0,,* is the

smallest comonoid of type *. The join v 9 u of any two comonoids v:x and u:x of type x is also a comonoid
of type x. Denote the join semilattice of comonoids of type x by Q(*). [Standardisation property:] O(i)
is closed under tensor product; in feet, O(z) is a lattice, with the tensor product v ® u of two comonoids
v,ueQ(x) being the lattice meet in Q{x), and the tensor product identity (or type) endoterm x being the

largest comonoid of type x. Furthermore, the meet distributes over the join. This standardization property

means that the local contexts (monoidal semilattices) of comonoids {Q(x) ! x a type} are standard contexts

(distributive lattices), and shows why propositions (interpreted as comonoids) and programs (interpreted

as terms) are subsumed by a single concept. In subset categories P(C) a comonoid of type x is either the

empty endoterm x-t x or the identity singleton z {A} x, and these can be interpreted as the truth-values

false and true, so that Q(x) is the complete Heyting algebra Q{x) 2£ 2.
A Uoate triple or Hoare assertion v:y ± u:x in a join bisemilattice P, denoted traditionally although

imprecisely by {v}r{u}, consists of a «flow specifying" P-term y i x and two P-comonoids, a "precondition"

or source comonoid v€Q(y) and a "postcondition" or target comonoid u€G(*), which satisfy the "precondi-
tion/postcondition constraint" «®r < r®u. Composition of Hoare triples {*/}»{t/}®{v}r{u} = M(»®r){u}

is well-defined and {u}x{u} is the identity Hoare triple at the comonoid a:x. Also, there is a zero triple

{„}0,,a{u} for any precondition »€Q(y) and postcondition uGfl(x), and if {v}r{u} and {v}*{u} are two

triples with the same precondition and postcondition then {v}(r 0 «)W «■ aIso a triPle- So **P«d ^monoids
as objects and Hoare triples as arrows form a join bisemilattice M(P) called the Hoare assertional category

over P. There is an obvious underlying type/term functor M(P) -^ P which is a morphism of join bisemi-

lattices. For each type x in P, the fiber over x is the subcategory TfHx) C K(P) of all comonoids and

triples which map to *. The objects in Tfl(*) »» Ae comonoids of type x and the triples in TP »(*) are of
the form {u'}x{u}, pairs of comonoids of type x satisfying u' < u. Hence, the fiber over x is just the join

semilattice (actually, distributive lattice) of comonoids Tfl{x) = £!(*)■
For each type z in P, the lattice of comonoids 0(«) is a (one object) join sub-bisemilattice of P, and

the inclusion functor 0(«) '-^ P is a morphism of join bisemilattices. Tensor product, which is lattice meet

in Q(x), forms a local conjunction functor Q(x) &* JSL into the category of join semilattices, defined by

20f

®x(x) = Q{x) = (0(a), e,0> and ®,(u) = Q(«) (-^* 0(s). Conjunction is a join semilattice functor. This
example is a special case of the following construct. An indexed join temilattiee (P, G<)> consists of: 1. a join

bisemilattice P, and 2. a join semilattice functor P SÜ JSL: (a) D* is a join semilattice for each type x; (b)
n» °i Q* is a morphism of join semilattices for each term y -^ x called the direct flow specified by r, with

G'(0) = 0 and D'(«/ 0 v') = D'(v) ® D'(v'); (<0 °(} is factorial, with D* = Ida., and ü*®* = G* • G';
(d) G< > is a join semilattice functor, (i) if r K . then G' < G', fii) 0° = A and (iii) n'«* = □' V tf.
Equivalently, an indexed join semilattice is a join bisemilattice morphism H -» P, which, as a functor, is
an indexed category (an opfibration). A direct flow category (P, □<)) is an indexed join semilattice, (3)
which is standard on subtypes: (a) D* is a join subsemilattice of comonoids O* C 0(«) = (0(2), 8,0) for
each type x; (b) □<' restricted to z-comonoids is the local conjunction functor Inc* • G(' = ®«; that is,

' subtype direct flow D* ^ G* is just conjunction D'(u') = u' ® u for each comonoid u€ü'. Comonoids
in G* and conjunction form a direct flow category (Ga,®a> for each type x. A morphism of direct flow
categories (P, QP'U) -%-> <Q, G^'O) is a morphism of join bisemilattices P -^+ Q which preserves flow
H • uQtl) = UF'lJ. So inclusion <a*,®»> lj^ <P, G(}) is a morphism of direct flow categories.

A job bisemilattice P has direct Hoare flow when for any term y -4 a and any precondition i>6Q(y),
there is a postcondition D'(tf)€0(z) called the strongest postcondition of r which satisfies the axiom Gf(v) <
u iff v ® r i r ® u iff (t>:y -^ u:x)€Ar(^(P)) or G'(v) = A{« 6 0(a) | v ® r ^ r ® u} for any postcondition
ueü(z). Also, D'(a4(w)) ^ a"*f(w) for any comonoid tueQC*). Some identities for the direct flow
operator G<) are: G'(u') = u' ® u for all comonoids u€ß(z); D*®f(«) = D'(nJ(*)) for two composable
P-terms z 4. y and y -^ x. A join bisemilattice P has ranges when for any P-term y-^ x there is a ran?«
postcondition *i(r)eQ(*) which satisfies the axioms ^(r) i u iffr « r ® « and dM» ® r) = <9i(5i(«) ® r)
for any postcondition ueQ(x) and composable P-term z -^ y. Some identities for the range operator <9i are:
"subtypes are their own range" <?i(u) = u for any comonoid ueO(x); "the range of a subterm is the subterm
of the range" d\{r ® u) = d\{r) ® u for any term y -^ x and any postcondition ueQ(x); and "only zero
has empty range" <9i(r) = 0, iff r = 0,,, for any term y -^ x. If P has direct Hoare flow G(], then it has
ranges dx defined to be the direct flow of the top (identity) precondition <9i(r) = G'(y) for any term y -^ x.
Conversely, if P has ranges, then it has direct Hoare flow defined to be the range of the tensor product
(guarded term) 0'(v) = <M« ® r). A direct Hoare flow category is a join bisemilattice which has direct
Hoare flow, or equivalently, ranges. A join bisemilattice P is a direct Hoare flow category iff the associated
functor X(P) -2E» P is an indexed join semilattice (H(P),TP,P). In fact, any direct Hoare flow category is

a direct flow category.

Summary

The most important improvement made by dialectical logic over dynamic logic is in the correct and rigorous
treatment of subtypes. It is a serious conceptual error [Kozenj to view dynamic logic as a two-sorted structure:
one sort being programs and the other sort being propositions. The central viewpoint of dialectical logic
is that predicates (here called subtypes, or more precisely, comonoids) are special local idempotent kinds
of programs (here called terms or processes), which by their idempotent and coreflexive nature form the
standard logical structure of Heyting algebra in the intuitionistic case or Boolean algebra in the classical
case. The two dynamic logic operations of program sequencing and predicate conjunction are combined
into the one (horizontal) dialectical logic operation of tensor product of terms, and the two dynamic logic
operations of program summing and predicate disjunction are combined into the one (vertical) dialectical

2.0 S

logic operation of boolean sum. Now, tensor product and boolean sum are global operations on terms. In

addition, dialectical logic has complement operations called tensor implications and tensor negation [Kent],

which are also global. In contrast to these, dialectical program semantics, introduces local complement

operations called boolean implication and boolean negation.
Global products and coproducts of precondition/postcondition assertions are defined in terms of biprod-

ucts in the indexing category underlying a dialectical flow category. Biproducts model the semantic notion

of «type sum'. Completely general axioms for domains-of-definition and ranges, and their negation duals

kernels and cokernils, can be given, which are equivalent to predicate transformer axioms, and do not re-

quire the notion of type sum. A nice program semantics has already been given [Manes] which is based

upon the notions of sums and bikernels, but one of the purposes of this paper is to show that dialectical

program semantics, the standard logical semantics of "relational structures», does not require sums and only

indirectly requires bikernels. Iterates, the dialectical logic rendition of the "consideration modality" of linear

logic [Girard], are denned as freely generated monoids, and dialectical categories with consideration modality

are introduced to ensure the existence of iterates. The important doctrine of linear logic, paraphrased by

the statement that "the familiar connective of boolean negation factors into two operations: linear nega-

tion, which is the purely negative part of negation; and the modality of.course, which has the meaning

of «affirmation", is verified in dialectical program semantics, since the local operation of boolean implica-

tion (boolean negation) of subtypes factors into the global operation of tensor implication (tensor negation)
followed by comonoidal support, the dialectical logic rendition of the "affirmation modality" of linear logic.

Term horn-set completeness defines the notion of topology of subtypes, thereby making further contact with
the affirmation modality. In such complete semantics, topologized matrices of terms are defined^and shown

to be (categorically) equivalent to single terms via the inverse operations of "partitioning" and "summing".
With the introduction of type sums a nontopological matrix theory is developed, where ordinary matrices

of terms are defined and shown to be (categorically) equivalent to terms with biproducts.
In summary, with dialectical program semantics we hope to unify small-scale and large-scale program

semantics by giving a concrete foundation for the observation that "precondition/postcondition assertions

are similar in structure to relational database constraints". I am now exploring the close connection between

the functional aspect of dialectical program semantics and Martin-Löf type theory given via locally cartesian

closed categories [Seeleyl Furthermore, there is a strong connection between dialectical program semantics

and algebraic and temporal logic models of regulation in feedback control systems [Wonhami.

References

[Girard] J.Y. Girard, Linear Logic. Theoretical Computer Science 50 (1987).
[Hoare] CA.R. Hoare, An Axiomatic Basis for Computer Programming. Comm. ACM 12 (1Ö67).

[Hylandj J.M.E. Hyland, et al, Tripos Theory. Math. Proc. Camb. Phil. Soc. 88 (1980).
'Kent] R.E. Kent, The Logic of Dialectical Processes. 4th Workshop on MFPS, Univ. Col. (1Ö88).

[Kozen] D. Kozen and J. Tiuryn, Logics of Programs. TR CS-87-172 CS Dept., Wash. St. Univ. (1987).

Xawvere] F.W. Lawvere, Adjointness in Foundations. Dialectica 23 (1969).

iManes] ' E. Manes, Assertional Categories. 3rd Workshop on MFPS, Tulane (1987).
Trattl' V.R. Pratt, Semantical Considerations on Floyd-Hoare Logic. 17th IEEE Symp. Found. CS. (1976).

[Seeleyl R.A.G. Seeley, Locally Cartesian Closed Categories and Type Theory. Camb. Phil. Soc. 95 (1984).

'Wonham1 W.M. Wonham, Logic and Language in Control Theory. 25th Allerton Conf. (1987).

-2.0 <o

Author Index

Baeten, J. 35
Department for Software Technology
Centre for Mathematics and
Computer Science
P.O.Box 4079, 1009 AB Amsterdam
The Netherlands

Benson, D.B. 47
Computer Science Dept.
Washington State University
Pullman, WA 99164-1210

Bidoit, M. 77
Laboratoire de Recherche en Informatique
C.N.R.S. U.A. 410 "Al Khowarizmi"
Universite Paris-Sud - Bat. 490
F - 91405 ORSAY Cedex
France

Bloom, B. 133
NE43-326
MIT Lab. for Computer Science
545 Technology Square
Cambridge, Massachusetts 02139

Bradley, L. 89
Computer Science and Engineering Depart-
ment
University of California, San Diego
Mail Code C-104
La Jolla, CA 92093

Constable, R. L.
Department of Computer Science
306 Upson Hall
Cornell University
Ithaca, NY 14850

123

Crew, R.F. 39
13Z Manzanita Park
Stanford, CA 94305

Dauchet, M. 181
LIFL (URA 369-CNRS)
Universite de Lille-Flandres-Artois
UFR IEEA
59655 VILLENEUVE D'ASCQ Cedex
France

Ehrig, H. 85
TU Berlin
Institut für Software und
Theoretische Informatik
Franklinstrasse 28/29
D-1000 Berlin 10

Even, S. 185
Computing and Info. Science Dept.
Kansas State University
Manhattan, KS 66506

Everett, R.P. 119
Research & Technology
British Telecom Research Laboratories
Martlesham Heath
IPSWICH, IP5 7RE, England

Fey, W. 85
TU Berlin
Institut für Software und
Theoretische Informatik
Franklinstrasse 28/29
D-1000 Berlin 10

Hansen, H. 85
TU Berlin
Institut für Software und

Theoretische Informatik
Franklinstrasse 28/29
D-1000 Berlin 10

Hatcher, W.S. 125
1060 Brown Avenue
Quebec City, Quebec
Canada G1S 2Z9

Ionescu, D. 115
University of Ottawa
Department of Electrical Engineering
770 King Edward Ave.
Ottawa, Ontario, Canada, KIN 6N5

Iyer, R.R. 47
Computer Science Dept.
Washington State University
Pullman, WA 99164-1210

Jacobs, D. 85
Computer Science Department
University of Southern California
Los Angeles, CA 90089-0782

Janicki, R. 141
Department of Computer Science and
Systems
McMaster University
1280 Main Street West
Hamilton, Ont., Canada L8S 4K1

Kent, R.E. 203
Department of Computer Science
University of Arkansas
Little Rock, AR 72207

Kühl, J. Ill
University of Iowa
Department of Electrical Engineering
Iowa City, IA 52242

Lawvere, W.F. 51
State University of New York at Buffalo
Department of Mathematics
Natural Science and Mathematics
106 Diefendorf Hall
Buffalo, New York 14214-3093

Logrippo, L. 107
University of Ottawa
Computer Science Department
Protocols Research Group
Ottawa, Ont. Canada KIN 9B4

Löwe, M. 85
TU Berlin
Institut für Software und
Theoretische Informatik
Franklinstrasse 28/29
D-1000 Berlin 10

Manca, V. 137
University of Pisa
Dip. Informatica
Corso Italia 40
1-56100 Pisa, Italy

Martin, G.A.R. 119
Research & Technology
British Telecom Research Laboratories
Martlesham Heath
IPSWICH, IP5 7RE, England

Meseguer, J. 105
Computer Science Laboratory
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Miller, S. 111
University of Iowa
Department of Computer Science
McLean Hall

n

Iowa City, IA 52242 Great Britain

Müldner, T.
University of Western Ontario
Department of Computer Science
48 Edgar Drive, London
Ontario, Canada N6A 1K1

Nivat, M.
Tour 45-55 - 5eme Etage
2, Place Jussieu
75251 Paris Cedex 05
France

141 Riecke, J.G. 133
NE43-326
MIT Lab. for Computer Science
545 Technology Square
Cambridge, Massachusetts 02139

9 Salibra, A. 137
University of Pisa
Dip. Informatica
Corso Italia 40
1-56100 Pisa, Italy

Oguztuzun, H.M. 195
University of Iowa
Department of Computer Science
McLean Hall
Iowa City, IA 52242

Parpucea, I. 101
University of Cluj-Napoca
Str. M. Kogalniceanu 1
3400 Cluj-Napoca
Romania

Schmidt, D. 185
Computing and Info. Science Dept.
Kansas State University
Manhattan, KS 66506

Scollo, G. 137
Department Informatica
University of Twente
P.O.Box 217
NL-7500AE Enschede
The Netherlands

Pigozzi, D.
Department of Mathematics
Iowa State University
400 Carver Hall
Ames, Iowa 50011

Pratt, V.
Computer Science Department
Stanford University
2215 Old Page Mill Road
Palo Alto, CA 94304

43 Talcott, C.L. 95
Stanford University
Department of Computer Science
Stanford, CA 94305-2095

Tison, S. 181
177 LIFL (URA 369-CNRS)

Universite de Lille-Flandres-Artois
UFR IEEA
59655 VILLENEUVE D'ASCQ Cedex
France

Rattray, C.I.M.
Department of Computing Science
University of Stirling
Stirling, Scotland FK9 4LA

165 Tonga, M.
Universite d'Yaoundd
Cameroun

125

in

Van Glabbek, R.J. 197
Centre for Mathematics and
Computer Science
P.O.Box 4079, 1009 AB Amsterdam
The Netherlands

Vidal, D. 189
C.R.I.N.
BP: 239, 54506 Nancy Cedex
France

Wagner, E. G. 145
IBM T. J. Watson Research Center
P.O. Box 218
Yorktown Hights, NY 10598

Wells, C. 173
Department of Mathematics and Statistics
Case Western Reserve University
Cleveland, Ohio 44106

Wen, L. 115
University of Ottawa
Department of Electrical Engineering
770 King Edward Ave.
Ottawa, Ontario, Canada, KIN 6N5

Weijland, W.P. 197
Centre for Mathematics and
Computer Science
P.O.Box 4079, 1009 AB Amsterdam
The Netherlands

Zhang, H. 129
Department of Computer Science
The University of Iowa
Iowa City, IA 52242

IV

